BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21454569)

  • 1. Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group.
    Sucharitakul J; Wongnate T; Chaiyen P
    J Biol Chem; 2011 May; 286(19):16900-9. PubMed ID: 21454569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme.
    Wongnate T; Surawatanawong P; Visitsatthawong S; Sucharitakul J; Scrutton NS; Chaiyen P
    J Am Chem Soc; 2014 Jan; 136(1):241-53. PubMed ID: 24368083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase.
    Sucharitakul J; Prongjit M; Haltrich D; Chaiyen P
    Biochemistry; 2008 Aug; 47(33):8485-90. PubMed ID: 18652479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms.
    Thotsaporn K; Chenprakhon P; Sucharitakul J; Mattevi A; Chaiyen P
    J Biol Chem; 2011 Aug; 286(32):28170-80. PubMed ID: 21680741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer.
    Visitsatthawong S; Chenprakhon P; Chaiyen P; Surawatanawong P
    J Am Chem Soc; 2015 Jul; 137(29):9363-74. PubMed ID: 26144862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation mode of pyranose 2-oxidase is controlled by pH.
    Prongjit M; Sucharitakul J; Palfey BA; Chaiyen P
    Biochemistry; 2013 Feb; 52(8):1437-45. PubMed ID: 23356577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic mechanism of pyranose 2-oxidase from trametes multicolor.
    Prongjit M; Sucharitakul J; Wongnate T; Haltrich D; Chaiyen P
    Biochemistry; 2009 May; 48(19):4170-80. PubMed ID: 19317444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.
    Sucharitakul J; Wongnate T; Chaiyen P
    Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative timing of hydrogen and proton transfers in the reaction of flavin oxidation catalyzed by choline oxidase.
    Gannavaram S; Gadda G
    Biochemistry; 2013 Feb; 52(7):1221-6. PubMed ID: 23339467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved active-site threonine is important for both sugar and flavin oxidations of pyranose 2-oxidase.
    Pitsawong W; Sucharitakul J; Prongjit M; Tan TC; Spadiut O; Haltrich D; Divne C; Chaiyen P
    J Biol Chem; 2010 Mar; 285(13):9697-9705. PubMed ID: 20089849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis.
    Sheng D; Ballou DP; Massey V
    Biochemistry; 2001 Sep; 40(37):11156-67. PubMed ID: 11551214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Reversible, Charge-Induced Intramolecular C4a-S-Cysteinyl-Flavin in Choline Oxidase Variant S101C.
    Su D; Yuan H; Gadda G
    Biochemistry; 2017 Dec; 56(51):6677-6690. PubMed ID: 29190076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutral versus charged species in enzyme catalysis. Classical and free energy barriers for oxygen atom transfer from C4a-hydroperoxyflavin to dimethyl sulfide.
    Canepa C; Bach RD; Dmitrenko O
    J Org Chem; 2002 Nov; 67(24):8653-61. PubMed ID: 12444653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase.
    Tinikul R; Lawan N; Akeratchatapan N; Pimviriyakul P; Chinantuya W; Suadee C; Sucharitakul J; Chenprakhon P; Ballou DP; Entsch B; Chaiyen P
    FEBS J; 2021 May; 288(10):3246-3260. PubMed ID: 33289305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the enzymatic formation, chemical features, and biological role of the flavin-N5-oxide.
    Saleem-Batcha R; Teufel R
    Curr Opin Chem Biol; 2018 Dec; 47():47-53. PubMed ID: 30165331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of C4a-hydroperoxyflavin protonation in the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase.
    Chenprakhon P; Trisrivirat D; Thotsaporn K; Sucharitakul J; Chaiyen P
    Biochemistry; 2014 Jul; 53(25):4084-6. PubMed ID: 24878148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction.
    Meneely KM; Barr EW; Bollinger JM; Lamb AL
    Biochemistry; 2009 May; 48(20):4371-6. PubMed ID: 19368334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.