BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21454631)

  • 1. The N-terminal domain of the yeast mitochondrial RNA polymerase regulates multiple steps of transcription.
    Paratkar S; Deshpande AP; Tang GQ; Patel SS
    J Biol Chem; 2011 May; 286(18):16109-20. PubMed ID: 21454631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial transcription factor Mtf1 traps the unwound non-template strand to facilitate open complex formation.
    Paratkar S; Patel SS
    J Biol Chem; 2010 Feb; 285(6):3949-3956. PubMed ID: 20008320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast Mitochondrial Transcription Factor Mtf1 Determines the Precision of Promoter-Directed Initiation of RNA Polymerase Rpo41.
    Yang X; Chang HR; Yin YW
    PLoS One; 2015; 10(9):e0136879. PubMed ID: 26332125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and purification of wild type and mutant forms of the yeast mitochondrial core RNA polymerase, Rpo41.
    Matsunaga M; Jang SH; Jaehning JA
    Protein Expr Purif; 2004 May; 35(1):126-30. PubMed ID: 15039075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-EM Structures Reveal Transcription Initiation Steps by Yeast Mitochondrial RNA Polymerase.
    De Wijngaert B; Sultana S; Singh A; Dharia C; Vanbuel H; Shen J; Vasilchuk D; Martinez SE; Kandiah E; Patel SS; Das K
    Mol Cell; 2021 Jan; 81(2):268-280.e5. PubMed ID: 33278362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.
    Ramachandran A; Nandakumar D; Deshpande AP; Lucas TP; R-Bhojappa R; Tang GQ; Raney K; Yin YW; Patel SS
    J Biol Chem; 2016 Aug; 291(32):16828-39. PubMed ID: 27311715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in the yeast mitochondrial RNA polymerase specificity factor, Mtf1, verify an essential role in promoter utilization.
    Karlok MA; Jang SH; Jaehning JA
    J Biol Chem; 2002 Aug; 277(31):28143-9. PubMed ID: 12021282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence mapping of the open complex of yeast mitochondrial RNA polymerase.
    Tang GQ; Paratkar S; Patel SS
    J Biol Chem; 2009 Feb; 284(9):5514-22. PubMed ID: 19116203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The C-terminal tails of the mitochondrial transcription factors Mtf1 and TFB2M are part of an autoinhibitory mechanism that regulates DNA binding.
    Basu U; Mishra N; Farooqui M; Shen J; Johnson LC; Patel SS
    J Biol Chem; 2020 May; 295(20):6823-6830. PubMed ID: 32241911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C-terminal tail of the yeast mitochondrial transcription factor Mtf1 coordinates template strand alignment, DNA scrunching and timely transition into elongation.
    Basu U; Lee SW; Deshpande A; Shen J; Sohn BK; Cho H; Kim H; Patel SS
    Nucleic Acids Res; 2020 Mar; 48(5):2604-2620. PubMed ID: 31980825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation of promoter melting mechanisms in divergent regions of the single-subunit RNA polymerases.
    Velazquez G; Guo Q; Wang L; Brieba LG; Sousa R
    Biochemistry; 2012 May; 51(18):3901-10. PubMed ID: 22524540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional fidelities of human mitochondrial POLRMT, yeast mitochondrial Rpo41, and phage T7 single-subunit RNA polymerases.
    Sultana S; Solotchi M; Ramachandran A; Patel SS
    J Biol Chem; 2017 Nov; 292(44):18145-18160. PubMed ID: 28882896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase.
    Deshpande AP; Patel SS
    Biochim Biophys Acta; 2012; 1819(9-10):930-8. PubMed ID: 22353467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding.
    Velazquez G; Sousa R; Brieba LG
    RNA Biol; 2015; 12(5):514-24. PubMed ID: 25654332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic promoter recognition by a "core" RNA polymerase.
    Matsunaga M; Jaehning JA
    J Biol Chem; 2004 Oct; 279(43):44239-42. PubMed ID: 15342628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of the yeast mitochondrial RNA polymerase with the +1 and +2 promoter bases dictate transcription initiation efficiency.
    Deshpande AP; Patel SS
    Nucleic Acids Res; 2014 Oct; 42(18):11721-32. PubMed ID: 25249624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mutation in the yeast mitochondrial core RNA polymerase, Rpo41, confers defects in both specificity factor interaction and promoter utilization.
    Matsunaga M; Jaehning JA
    J Biol Chem; 2004 Jan; 279(3):2012-9. PubMed ID: 14570924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast DEAD box protein Mss116p is a transcription elongation factor that modulates the activity of mitochondrial RNA polymerase.
    Markov DA; Wojtas ID; Tessitore K; Henderson S; McAllister WT
    Mol Cell Biol; 2014 Jul; 34(13):2360-9. PubMed ID: 24732805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opening-closing dynamics of the mitochondrial transcription pre-initiation complex.
    Kim H; Tang GQ; Patel SS; Ha T
    Nucleic Acids Res; 2012 Jan; 40(1):371-80. PubMed ID: 21911357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of the mitochondrial RNA polymerase and transcription factor in the fission yeast Schizosaccharomyces pombe.
    Jiang H; Sun W; Wang Z; Zhang J; Chen D; Murchie AI
    Nucleic Acids Res; 2011 Jul; 39(12):5119-30. PubMed ID: 21357609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.