These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 21454648)
1. Architecture of a full-length retroviral integrase monomer and dimer, revealed by small angle X-ray scattering and chemical cross-linking. Bojja RS; Andrake MD; Weigand S; Merkel G; Yarychkivska O; Henderson A; Kummerling M; Skalka AM J Biol Chem; 2011 May; 286(19):17047-59. PubMed ID: 21454648 [TBL] [Abstract][Full Text] [Related]
2. The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study. Balasubramanian S; Rajagopalan M; Bojja RS; Skalka AM; Andrake MD; Ramaswamy A J Biomol Struct Dyn; 2017 Dec; 35(16):3469-3485. PubMed ID: 27835934 [TBL] [Abstract][Full Text] [Related]
3. Architecture and assembly of HIV integrase multimers in the absence of DNA substrates. Bojja RS; Andrake MD; Merkel G; Weigand S; Dunbrack RL; Skalka AM J Biol Chem; 2013 Mar; 288(10):7373-86. PubMed ID: 23322775 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase. Yang ZN; Mueser TC; Bushman FD; Hyde CC J Mol Biol; 2000 Feb; 296(2):535-48. PubMed ID: 10669607 [TBL] [Abstract][Full Text] [Related]
5. Localization of ASV integrase-DNA contacts by site-directed crosslinking and their structural analysis. Peletskaya E; Andrake M; Gustchina A; Merkel G; Alexandratos J; Zhou D; Bojja RS; Satoh T; Potapov M; Kogon A; Potapov V; Wlodawer A; Skalka AM PLoS One; 2011; 6(12):e27751. PubMed ID: 22145019 [TBL] [Abstract][Full Text] [Related]
6. C-Terminal Domain of Integrase Binds between the Two Active Sites. Roberts VA J Chem Theory Comput; 2015 Sep; 11(9):4500-11. PubMed ID: 26575940 [TBL] [Abstract][Full Text] [Related]
7. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293)--an initial glance of the viral DNA binding platform. Chen Z; Yan Y; Munshi S; Li Y; Zugay-Murphy J; Xu B; Witmer M; Felock P; Wolfe A; Sardana V; Emini EA; Hazuda D; Kuo LC J Mol Biol; 2000 Feb; 296(2):521-33. PubMed ID: 10669606 [TBL] [Abstract][Full Text] [Related]
8. Structural dynamics of full-length retroviral integrase: a molecular dynamics analysis. Balasubramanian S; Rajagopalan M; Ramaswamy A J Biomol Struct Dyn; 2012; 29(6):659-70. PubMed ID: 22545997 [TBL] [Abstract][Full Text] [Related]
9. Ubiquitination of non-lysine residues in the retroviral integrase. Wang Z; Hou X; Wang Y; Xu A; Cao W; Liao M; Zhang R; Tang J Biochem Biophys Res Commun; 2017 Dec; 494(1-2):57-62. PubMed ID: 29054407 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of catalytic core domains of retroviral integrases and role of divalent cations in enzymatic activity. Wlodawer A Adv Virus Res; 1999; 52():335-50. PubMed ID: 10384241 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for functional tetramerization of lentiviral integrase. Hare S; Di Nunzio F; Labeja A; Wang J; Engelman A; Cherepanov P PLoS Pathog; 2009 Jul; 5(7):e1000515. PubMed ID: 19609359 [TBL] [Abstract][Full Text] [Related]
12. Structure and function of retroviral integrase. Maertens GN; Engelman AN; Cherepanov P Nat Rev Microbiol; 2022 Jan; 20(1):20-34. PubMed ID: 34244677 [TBL] [Abstract][Full Text] [Related]
13. Small-angle X-ray characterization of the nucleoprotein complexes resulting from DNA-induced oligomerization of HIV-1 integrase. Baranova S; Tuzikov FV; Zakharova OD; Tuzikova NA; Calmels C; Litvak S; Tarrago-Litvak L; Parissi V; Nevinsky GA Nucleic Acids Res; 2007; 35(3):975-87. PubMed ID: 17259219 [TBL] [Abstract][Full Text] [Related]
14. A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly. Ballandras A; Moreau K; Robert X; Confort MP; Merceron R; Haser R; Ronfort C; Gouet P PLoS One; 2011; 6(8):e23032. PubMed ID: 21857987 [TBL] [Abstract][Full Text] [Related]
15. A possible role for the asymmetric C-terminal domain dimer of Rous sarcoma virus integrase in viral DNA binding. Shi K; Pandey KK; Bera S; Vora AC; Grandgenett DP; Aihara H PLoS One; 2013; 8(2):e56892. PubMed ID: 23451105 [TBL] [Abstract][Full Text] [Related]
17. Crosslinking and mass spectrometry suggest that the isolated NTD domain dimer of Moloney murine leukemia virus integrase adopts a parallel arrangement in solution. Henriquez DR; Zhao C; Zheng H; Arbildua JJ; Acevedo ML; Roth MJ; Leon O BMC Struct Biol; 2013 Jul; 13():14. PubMed ID: 23844665 [TBL] [Abstract][Full Text] [Related]
18. Differential assembly of Rous sarcoma virus tetrameric and octameric intasomes is regulated by the C-terminal domain and tail region of integrase. Bera S; Pandey KK; Aihara H; Grandgenett DP J Biol Chem; 2018 Oct; 293(42):16440-16452. PubMed ID: 30185621 [TBL] [Abstract][Full Text] [Related]
19. Piecing together the structure of retroviral integrase, an important target in AIDS therapy. Jaskolski M; Alexandratos JN; Bujacz G; Wlodawer A FEBS J; 2009 Jun; 276(11):2926-46. PubMed ID: 19490099 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Chen JC; Krucinski J; Miercke LJ; Finer-Moore JS; Tang AH; Leavitt AD; Stroud RM Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8233-8. PubMed ID: 10890912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]