BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21454648)

  • 1. Architecture of a full-length retroviral integrase monomer and dimer, revealed by small angle X-ray scattering and chemical cross-linking.
    Bojja RS; Andrake MD; Weigand S; Merkel G; Yarychkivska O; Henderson A; Kummerling M; Skalka AM
    J Biol Chem; 2011 May; 286(19):17047-59. PubMed ID: 21454648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study.
    Balasubramanian S; Rajagopalan M; Bojja RS; Skalka AM; Andrake MD; Ramaswamy A
    J Biomol Struct Dyn; 2017 Dec; 35(16):3469-3485. PubMed ID: 27835934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architecture and assembly of HIV integrase multimers in the absence of DNA substrates.
    Bojja RS; Andrake MD; Merkel G; Weigand S; Dunbrack RL; Skalka AM
    J Biol Chem; 2013 Mar; 288(10):7373-86. PubMed ID: 23322775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase.
    Yang ZN; Mueser TC; Bushman FD; Hyde CC
    J Mol Biol; 2000 Feb; 296(2):535-48. PubMed ID: 10669607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of ASV integrase-DNA contacts by site-directed crosslinking and their structural analysis.
    Peletskaya E; Andrake M; Gustchina A; Merkel G; Alexandratos J; Zhou D; Bojja RS; Satoh T; Potapov M; Kogon A; Potapov V; Wlodawer A; Skalka AM
    PLoS One; 2011; 6(12):e27751. PubMed ID: 22145019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-Terminal Domain of Integrase Binds between the Two Active Sites.
    Roberts VA
    J Chem Theory Comput; 2015 Sep; 11(9):4500-11. PubMed ID: 26575940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293)--an initial glance of the viral DNA binding platform.
    Chen Z; Yan Y; Munshi S; Li Y; Zugay-Murphy J; Xu B; Witmer M; Felock P; Wolfe A; Sardana V; Emini EA; Hazuda D; Kuo LC
    J Mol Biol; 2000 Feb; 296(2):521-33. PubMed ID: 10669606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural dynamics of full-length retroviral integrase: a molecular dynamics analysis.
    Balasubramanian S; Rajagopalan M; Ramaswamy A
    J Biomol Struct Dyn; 2012; 29(6):659-70. PubMed ID: 22545997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquitination of non-lysine residues in the retroviral integrase.
    Wang Z; Hou X; Wang Y; Xu A; Cao W; Liao M; Zhang R; Tang J
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):57-62. PubMed ID: 29054407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of catalytic core domains of retroviral integrases and role of divalent cations in enzymatic activity.
    Wlodawer A
    Adv Virus Res; 1999; 52():335-50. PubMed ID: 10384241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for functional tetramerization of lentiviral integrase.
    Hare S; Di Nunzio F; Labeja A; Wang J; Engelman A; Cherepanov P
    PLoS Pathog; 2009 Jul; 5(7):e1000515. PubMed ID: 19609359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of retroviral integrase.
    Maertens GN; Engelman AN; Cherepanov P
    Nat Rev Microbiol; 2022 Jan; 20(1):20-34. PubMed ID: 34244677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-angle X-ray characterization of the nucleoprotein complexes resulting from DNA-induced oligomerization of HIV-1 integrase.
    Baranova S; Tuzikov FV; Zakharova OD; Tuzikova NA; Calmels C; Litvak S; Tarrago-Litvak L; Parissi V; Nevinsky GA
    Nucleic Acids Res; 2007; 35(3):975-87. PubMed ID: 17259219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly.
    Ballandras A; Moreau K; Robert X; Confort MP; Merceron R; Haser R; Ronfort C; Gouet P
    PLoS One; 2011; 6(8):e23032. PubMed ID: 21857987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A possible role for the asymmetric C-terminal domain dimer of Rous sarcoma virus integrase in viral DNA binding.
    Shi K; Pandey KK; Bera S; Vora AC; Grandgenett DP; Aihara H
    PLoS One; 2013; 8(2):e56892. PubMed ID: 23451105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural properties of HIV integrase. Lens epithelium-derived growth factor oligomers.
    Gupta K; Diamond T; Hwang Y; Bushman F; Van Duyne GD
    J Biol Chem; 2010 Jun; 285(26):20303-15. PubMed ID: 20406807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosslinking and mass spectrometry suggest that the isolated NTD domain dimer of Moloney murine leukemia virus integrase adopts a parallel arrangement in solution.
    Henriquez DR; Zhao C; Zheng H; Arbildua JJ; Acevedo ML; Roth MJ; Leon O
    BMC Struct Biol; 2013 Jul; 13():14. PubMed ID: 23844665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential assembly of Rous sarcoma virus tetrameric and octameric intasomes is regulated by the C-terminal domain and tail region of integrase.
    Bera S; Pandey KK; Aihara H; Grandgenett DP
    J Biol Chem; 2018 Oct; 293(42):16440-16452. PubMed ID: 30185621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piecing together the structure of retroviral integrase, an important target in AIDS therapy.
    Jaskolski M; Alexandratos JN; Bujacz G; Wlodawer A
    FEBS J; 2009 Jun; 276(11):2926-46. PubMed ID: 19490099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding.
    Chen JC; Krucinski J; Miercke LJ; Finer-Moore JS; Tang AH; Leavitt AD; Stroud RM
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8233-8. PubMed ID: 10890912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.