These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21454656)

  • 1. Conformational changes at the agonist binding domain of the N-methyl-D-aspartic acid receptor.
    Rambhadran A; Gonzalez J; Jayaraman V
    J Biol Chem; 2011 May; 286(19):16953-7. PubMed ID: 21454656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors.
    Hansen KB; Tajima N; Risgaard R; Perszyk RE; Jørgensen L; Vance KM; Ogden KK; Clausen RP; Furukawa H; Traynelis SF
    Mol Pharmacol; 2013 Jul; 84(1):114-27. PubMed ID: 23625947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor.
    Dolino DM; Cooper D; Ramaswamy S; Jaurich H; Landes CF; Jayaraman V
    J Biol Chem; 2015 Jan; 290(2):797-804. PubMed ID: 25404733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit arrangement in N-methyl-D-aspartate (NMDA) receptors.
    Rambhadran A; Gonzalez J; Jayaraman V
    J Biol Chem; 2010 May; 285(20):15296-15301. PubMed ID: 20304927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminescence resonance energy transfer investigation of conformational changes in the ligand binding domain of a kainate receptor.
    Du M; Rambhadran A; Jayaraman V
    J Biol Chem; 2008 Oct; 283(40):27074-8. PubMed ID: 18658129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry and conformation of the ligand-binding domain of GluR2 subtype of glutamate receptors.
    Cheng Q; Jayaraman V
    J Biol Chem; 2004 Jun; 279(25):26346-50. PubMed ID: 15100219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Conformational Variability in the GluK2 Kainate Receptor Ligand-Binding Domain.
    Wied TJ; Chin AC; Lau AY
    Structure; 2019 Jan; 27(1):189-195.e2. PubMed ID: 30482727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical interplay in the mechanism of partial agonist activation in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors.
    Mankiewicz KA; Rambhadran A; Wathen L; Jayaraman V
    Biochemistry; 2008 Jan; 47(1):398-404. PubMed ID: 18081322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes.
    Armstrong N; Mayer M; Gouaux E
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5736-41. PubMed ID: 12730367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric mechanism in AMPA receptors: a FRET-based investigation of conformational changes.
    Ramanoudjame G; Du M; Mankiewicz KA; Jayaraman V
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10473-10478. PubMed ID: 16793923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitatory amino acid responses in relay neurons of the rat lateral geniculate nucleus.
    Harata N; Katayama J; Akaike N
    Neuroscience; 1999 Mar; 89(1):109-25. PubMed ID: 10051221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereochemistry of glutamate receptor agonist efficacy: engineering a dual-specificity AMPA/kainate receptor.
    Madden DR; Cheng Q; Thiran S; Rajan S; Rigo F; Keinänen K; Reinelt S; Zimmermann H; Jayaraman V
    Biochemistry; 2004 Dec; 43(50):15838-44. PubMed ID: 15595838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary trace analysis of ionotropic glutamate receptor sequences and modeling the interactions of agonists with different NMDA receptor subunits.
    Blaise MC; Sowdhamini R; Rao MR; Pradhan N
    J Mol Model; 2004 Dec; 10(5-6):305-16. PubMed ID: 15597199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purified unitary kainate/alpha-amino-3-hydroxy-5-methylisooxazole-propionate (AMPA) and kainate/AMPA/N-methyl-D-aspartate receptors with interchangeable subunits.
    Henley JM; Ambrosini A; Rodriguez-Ithurralde D; Sudan H; Brackley P; Kerry C; Mellor I; Abutidze K; Usherwood PN; Barnard EA
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):4806-10. PubMed ID: 1375752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial agonists and subunit selectivity at NMDA receptors.
    Risgaard R; Hansen KB; Clausen RP
    Chemistry; 2010 Dec; 16(47):13910-8. PubMed ID: 20945316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation.
    Vyklicky V; Stanley C; Habrian C; Isacoff EY
    Nat Commun; 2021 May; 12(1):2694. PubMed ID: 33976221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model structures of the N-methyl-D-aspartate receptor subunit NR1 explain the molecular recognition of agonist and antagonist ligands.
    Moretti L; Pentikäinen OT; Settimo L; Johnson MS
    J Struct Biol; 2004 Mar; 145(3):205-15. PubMed ID: 14960371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex pharmacological properties of recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subtypes.
    Stein E; Cox JA; Seeburg PH; Verdoorn TA
    Mol Pharmacol; 1992 Nov; 42(5):864-71. PubMed ID: 1279377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate and Glycine Binding to the NMDA Receptor.
    Yu A; Lau AY
    Structure; 2018 Jul; 26(7):1035-1043.e2. PubMed ID: 29887499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full domain closure of the ligand-binding core of the ionotropic glutamate receptor iGluR5 induced by the high affinity agonist dysiherbaine and the functional antagonist 8,9-dideoxyneodysiherbaine.
    Frydenvang K; Lash LL; Naur P; Postila PA; Pickering DS; Smith CM; Gajhede M; Sasaki M; Sakai R; Pentikaïnen OT; Swanson GT; Kastrup JS
    J Biol Chem; 2009 May; 284(21):14219-29. PubMed ID: 19297335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.