These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 21454671)

  • 1. Uncoupling charge movement from channel opening in voltage-gated potassium channels by ruthenium complexes.
    Jara-Oseguera A; Ishida IG; Rangel-Yescas GE; Espinosa-Jalapa N; Pérez-Guzmán JA; Elías-Viñas D; Le Lagadec R; Rosenbaum T; Islas LD
    J Biol Chem; 2011 May; 286(18):16414-25. PubMed ID: 21454671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage sensitivity and gating charge in Shaker and Shab family potassium channels.
    Islas LD; Sigworth FJ
    J Gen Physiol; 1999 Nov; 114(5):723-42. PubMed ID: 10539976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkanols inhibit voltage-gated K(+) channels via a distinct gating modifying mechanism that prevents gate opening.
    Martínez-Morales E; Kopljar I; Snyders DJ; Labro AJ
    Sci Rep; 2015 Nov; 5():17402. PubMed ID: 26616025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opening the shaker K+ channel with hanatoxin.
    Milescu M; Lee HC; Bae CH; Kim JI; Swartz KJ
    J Gen Physiol; 2013 Feb; 141(2):203-16. PubMed ID: 23359283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High temperature sensitivity is intrinsic to voltage-gated potassium channels.
    Yang F; Zheng J
    Elife; 2014 Jul; 3():e03255. PubMed ID: 25030910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of outer vestibule dynamics and current magnitude in the Kv2.1 potassium channel.
    Andalib P; Wood MJ; Korn SJ
    J Gen Physiol; 2002 Nov; 120(5):739-55. PubMed ID: 12407083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of Conorfamide-Sr3 on Human Voltage-Gated Kv1 Potassium Channel Subtypes.
    López-Vera E; Martínez-Hernández L; Aguilar MB; Carrillo E; Gajewiak J
    Mar Drugs; 2020 Aug; 18(8):. PubMed ID: 32823677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of intrinsic excitability in hippocampal neurons by activity-dependent modulation of the KV2.1 potassium channel.
    Mohapatra DP; Misonou H; Pan SJ; Held JE; Surmeier DJ; Trimmer JS
    Channels (Austin); 2009; 3(1):46-56. PubMed ID: 19276663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tarantula toxin GxTx detains K
    Tilley DC; Angueyra JM; Eum KS; Kim H; Chao LH; Peng AW; Sack JT
    J Gen Physiol; 2019 Mar; 151(3):292-315. PubMed ID: 30397012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode shift of the voltage sensors in Shaker K+ channels is caused by energetic coupling to the pore domain.
    Haddad GA; Blunck R
    J Gen Physiol; 2011 May; 137(5):455-72. PubMed ID: 21518834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels.
    Ma Z; Wong KY; Horrigan FT
    J Gen Physiol; 2008 May; 131(5):483-502. PubMed ID: 18443360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KCNQ1 channels do not undergo concerted but sequential gating transitions in both the absence and the presence of KCNE1 protein.
    Meisel E; Dvir M; Haitin Y; Giladi M; Peretz A; Attali B
    J Biol Chem; 2012 Oct; 287(41):34212-24. PubMed ID: 22908235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carvedilol blockage of delayed rectifier Kv2.1 channels and its molecular basis.
    Cheng N; Ren S; Yang JF; Liu XM; Li XT
    Eur J Pharmacol; 2019 Jul; 855():50-55. PubMed ID: 31063774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel.
    Soler-Llavina GJ; Chang TH; Swartz KJ
    Neuron; 2006 Nov; 52(4):623-34. PubMed ID: 17114047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Status of the intracellular gate in the activated-not-open state of shaker K+ channels.
    del Camino D; Kanevsky M; Yellen G
    J Gen Physiol; 2005 Nov; 126(5):419-28. PubMed ID: 16260836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila.
    Peng IF; Wu CF
    J Neurophysiol; 2007 Jan; 97(1):780-94. PubMed ID: 17079336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Kv2.1 C terminus can autonomously transfer Kv2.1-like phosphorylation-dependent localization, voltage-dependent gating, and muscarinic modulation to diverse Kv channels.
    Mohapatra DP; Trimmer JS
    J Neurosci; 2006 Jan; 26(2):685-95. PubMed ID: 16407566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electrically silent Kv6.4 subunit confers hyperpolarized gating charge movement in Kv2.1/Kv6.4 heterotetrameric channels.
    Bocksteins E; Labro AJ; Snyders DJ; Mohapatra DP
    PLoS One; 2012; 7(5):e37143. PubMed ID: 22615922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of a gating modifier toxin induces intersubunit cooperativity early in the Shaker K channel's activation pathway.
    Sack JT; Aldrich RW
    J Gen Physiol; 2006 Jul; 128(1):119-32. PubMed ID: 16801385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.