These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21454942)

  • 21. Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells.
    Kroeze JE; Hirata N; Koops S; Nazeeruddin MK; Schmidt-Mende L; Grätzel M; Durrant JR
    J Am Chem Soc; 2006 Dec; 128(50):16376-83. PubMed ID: 17165794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study of conventional and hybrid blocking layers for solid-state dye-sensitized solar cells.
    Lellig P; Niedermeier MA; Rawolle M; Meister M; Laquai F; Müller-Buschbaum P; Gutmann JS
    Phys Chem Chem Phys; 2012 Feb; 14(5):1607-13. PubMed ID: 22183035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy.
    Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR
    J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells.
    Yang L; Cappel UB; Unger EL; Karlsson M; Karlsson KM; Gabrielsson E; Sun L; Boschloo G; Hagfeldt A; Johansson EM
    Phys Chem Chem Phys; 2012 Jan; 14(2):779-89. PubMed ID: 22116450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells.
    Brennan TP; Bakke JR; Ding IK; Hardin BE; Nguyen WH; Mondal R; Bailie CD; Margulis GY; Hoke ET; Sellinger A; McGehee MD; Bent SF
    Phys Chem Chem Phys; 2012 Sep; 14(35):12130-40. PubMed ID: 22850593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular engineering of organic sensitizers for dye-sensitized solar cell applications.
    Hagberg DP; Yum JH; Lee H; De Angelis F; Marinado T; Karlsson KM; Humphry-Baker R; Sun L; Hagfeldt A; Grätzel M; Nazeeruddin MK
    J Am Chem Soc; 2008 May; 130(19):6259-66. PubMed ID: 18419124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A photovoltaic device structure based on internal electron emission.
    McFarland EW; Tang J
    Nature; 2003 Feb; 421(6923):616-8. PubMed ID: 12571591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvements of photocurrent by using modified SiO(2) in the poly(ether urethane)/poly(ethylene oxide) polymer electrolyte for all-solid-state dye-sensitized solar cells.
    Zhou Y; Xiang W; Chen S; Fang S; Zhou X; Zhang J; Lin Y
    Chem Commun (Camb); 2009 Jul; (26):3895-7. PubMed ID: 19662244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells.
    Chen CY; Wang M; Li JY; Pootrakulchote N; Alibabaei L; Ngoc-le CH; Decoppet JD; Tsai JH; Grätzel C; Wu CG; Zakeeruddin SM; Grätzel M
    ACS Nano; 2009 Oct; 3(10):3103-9. PubMed ID: 19746929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes.
    Howie WH; Claeyssens F; Miura H; Peter LM
    J Am Chem Soc; 2008 Jan; 130(4):1367-75. PubMed ID: 18177043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solid-state dye-sensitized TiO(2) solar cells based on a sensitizer covalently wired to a hole conducting polymer.
    Houarner-Rassin C; Blart E; Buvat P; Odobel F
    Photochem Photobiol Sci; 2008 Jul; 7(7):789-93. PubMed ID: 18597026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells.
    Choi H; Raabe I; Kim D; Teocoli F; Kim C; Song K; Yum JH; Ko J; Nazeeruddin MK; Grätzel M
    Chemistry; 2010 Jan; 16(4):1193-201. PubMed ID: 19998435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Layer-by-layer formation of block-copolymer-derived TiO(2) for solid-state dye-sensitized solar cells.
    Guldin S; Docampo P; Stefik M; Kamita G; Wiesner U; Snaith HJ; Steiner U
    Small; 2012 Feb; 8(3):432-40. PubMed ID: 22174177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel organic chromophore for dye-sensitized nanostructured solar cells.
    Hagberg DP; Edvinsson T; Marinado T; Boschloo G; Hagfeldt A; Sun L
    Chem Commun (Camb); 2006 Jun; (21):2245-7. PubMed ID: 16718317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells.
    Leijtens T; Ding IK; Giovenzana T; Bloking JT; McGehee MD; Sellinger A
    ACS Nano; 2012 Feb; 6(2):1455-62. PubMed ID: 22230653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-state dye-sensitized solar cells based on poly(3,4-ethylenedioxypyrrole) and metal-free organic dyes.
    Zhang J; Häggman L; Jouini M; Jarboui A; Boschloo G; Vlachopoulos N; Hagfeldt A
    Chemphyschem; 2014 Apr; 15(6):1043-7. PubMed ID: 24596255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities.
    Odobel F; Le Pleux L; Pellegrin Y; Blart E
    Acc Chem Res; 2010 Aug; 43(8):1063-71. PubMed ID: 20455541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mg(OOCCH(3))(2) as an electrolyte additive for quasi-solid dye-sensitized solar cells: with the purpose of enhancing both the photovoltage and photocurrent by modifying the TiO(2)/dye/electrolyte interfaces.
    Zhu Y; Shi Y; Wang L; Gao R; Ma B; Geng Y; Qiu Y
    Phys Chem Chem Phys; 2010 Dec; 12(45):15001-6. PubMed ID: 20953482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the stability of polymer solar cells by improving the conductivity of the nanostructured MoO3 hole-transport layer.
    Elumalai NK; Saha A; Vijila C; Jose R; Jie Z; Ramakrishna S
    Phys Chem Chem Phys; 2013 May; 15(18):6831-41. PubMed ID: 23545599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.