BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21455020)

  • 1. Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way?
    Staehelin C; Xie ZP; Illana A; Vierheilig H
    Plant Signal Behav; 2011 Mar; 6(3):372-7. PubMed ID: 21455020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses.
    Foo E; Ferguson BJ; Reid JB
    Plant Signal Behav; 2014; 9(9):e29593. PubMed ID: 25763697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases.
    Ried MK; Antolín-Llovera M; Parniske M
    Elife; 2014 Nov; 3():. PubMed ID: 25422918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes.
    Girardin A; Wang T; Ding Y; Keller J; Buendia L; Gaston M; Ribeyre C; Gasciolli V; Auriac MC; Vernié T; Bendahmane A; Ried MK; Parniske M; Morel P; Vandenbussche M; Schorderet M; Reinhardt D; Delaux PM; Bono JJ; Lefebvre B
    Curr Biol; 2019 Dec; 29(24):4249-4259.e5. PubMed ID: 31813608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early signaling in actinorhizal symbioses.
    Hocher V; Alloisio N; Bogusz D; Normand P
    Plant Signal Behav; 2011 Sep; 6(9):1377-9. PubMed ID: 21847030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production.
    Soyano T; Hirakawa H; Sato S; Hayashi M; Kawaguchi M
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14607-12. PubMed ID: 25246578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in actinorhizal symbiosis signaling.
    Froussart E; Bonneau J; Franche C; Bogusz D
    Plant Mol Biol; 2016 Apr; 90(6):613-22. PubMed ID: 26873697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses.
    Zhu H; Riely BK; Burns NJ; Ané JM
    Genetics; 2006 Apr; 172(4):2491-9. PubMed ID: 16452143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling in the arbuscular mycorrhizal symbiosis.
    Harrison MJ
    Annu Rev Microbiol; 2005; 59():19-42. PubMed ID: 16153162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Nod factor receptors and its allies involved in nitrogen fixation.
    Singh J; Verma PK
    Planta; 2023 Feb; 257(3):54. PubMed ID: 36780015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duplication of Symbiotic Lysin Motif Receptors Predates the Evolution of Nitrogen-Fixing Nodule Symbiosis.
    Rutten L; Miyata K; Roswanjaya YP; Huisman R; Bu F; Hartog M; Linders S; van Velzen R; van Zeijl A; Bisseling T; Kohlen W; Geurts R
    Plant Physiol; 2020 Oct; 184(2):1004-1023. PubMed ID: 32669419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interdependency of efficient nodulation and arbuscular mycorrhization in Piptadenia gonoacantha, a Brazilian legume tree.
    Bournaud C; James EK; de Faria SM; Lebrun M; Melkonian R; Duponnois R; Tisseyre P; Moulin L; Prin Y
    Plant Cell Environ; 2018 Sep; 41(9):2008-2020. PubMed ID: 29059477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms controlling legume autoregulation of nodulation.
    Reid DE; Ferguson BJ; Hayashi S; Lin YH; Gresshoff PM
    Ann Bot; 2011 Oct; 108(5):789-95. PubMed ID: 21856632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two Negative Regulatory Systems of Root Nodule Symbiosis: How Are Symbiotic Benefits and Costs Balanced?
    Nishida H; Suzaki T
    Plant Cell Physiol; 2018 Sep; 59(9):1733-1738. PubMed ID: 29860446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular genetic mechanisms used by legumes to control early stages of mutually beneficial (mutualistic) symbiosis].
    Zhukov VA; Shtark OIu; Borisov AIu; Tikhonovich IA
    Genetika; 2009 Nov; 45(11):1449-60. PubMed ID: 20058793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes.
    Ané JM; Kiss GB; Riely BK; Penmetsa RV; Oldroyd GE; Ayax C; Lévy J; Debellé F; Baek JM; Kalo P; Rosenberg C; Roe BA; Long SR; Dénarié J; Cook DR
    Science; 2004 Feb; 303(5662):1364-7. PubMed ID: 14963334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mutant-based analysis of the establishment of Nod-independent symbiosis in the legume Aeschynomene evenia.
    Quilbé J; Nouwen N; Pervent M; Guyonnet R; Cullimore J; Gressent F; Araújo NH; Gully D; Klopp C; Giraud E; Arrighi JF
    Plant Physiol; 2022 Sep; 190(2):1400-1417. PubMed ID: 35876558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses.
    Banasiak J; Jamruszka T; Murray JD; Jasiński M
    Plant Physiol; 2021 Dec; 187(4):2071-2091. PubMed ID: 34618047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative genetics and evolutionary morphology of symbiosis formed by plants with nitrogen-fixing microbes and endomycorrhizal fungi].
    Provorov NA; Borisov AIu; Tikhonovich IA
    Zh Obshch Biol; 2002; 63(6):451-72. PubMed ID: 12510586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of CLAVATA signalling in the negative regulation of mycorrhizal colonization and nitrogen response of tomato.
    Wang C; Velandia K; Kwon CT; Wulf KE; Nichols DS; Reid JB; Foo E
    J Exp Bot; 2021 Feb; 72(5):1702-1713. PubMed ID: 33186449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.