These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21455918)

  • 1. Identification of drug targets in vitro and in living cells by soluble-nanopolymer-based proteomics.
    Hu L; Iliuk A; Galan J; Hans M; Tao WA
    Angew Chem Int Ed Engl; 2011 Apr; 50(18):4133-6. PubMed ID: 21455918
    [No Abstract]   [Full Text] [Related]  

  • 2. Photochemical release of methotrexate from folate receptor-targeting PAMAM dendrimer nanoconjugate.
    Choi SK; Thomas TP; Li MH; Desai A; Kotlyar A; Baker JR
    Photochem Photobiol Sci; 2012 Apr; 11(4):653-60. PubMed ID: 22234658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel quantitative proteomics reagent based on soluble nanopolymers.
    Guo M; Galan J; Tao WA
    Chem Commun (Camb); 2007 Mar; (12):1251-3. PubMed ID: 17356773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicharged and/or water-soluble fluorescent dendrimers: properties and uses.
    Caminade AM; Hameau A; Majoral JP
    Chemistry; 2009 Sep; 15(37):9270-85. PubMed ID: 19718727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitation of dihydrofolate reductase in individual parental and methotrexate-resistant murine cells. Use of a fluorescence activated cell sorter.
    Kaufman RJ; Bertino JR; Schimke RT
    J Biol Chem; 1978 Aug; 253(16):5852-60. PubMed ID: 670236
    [No Abstract]   [Full Text] [Related]  

  • 6. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy.
    Wang Y; Guo R; Cao X; Shen M; Shi X
    Biomaterials; 2011 Apr; 32(12):3322-9. PubMed ID: 21315444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble nanopolymer-based phosphoproteomics for studying protein phosphatase.
    Guo M; Galan J; Tao WA
    Methods; 2007 Jul; 42(3):289-97. PubMed ID: 17532516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendrimer-based multivalent methotrexates as dual acting nanoconjugates for cancer cell targeting.
    Li MH; Choi SK; Thomas TP; Desai A; Lee KH; Kotlyar A; Banaszak Holl MM; Baker JR
    Eur J Med Chem; 2012 Jan; 47(1):560-72. PubMed ID: 22142685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of codon 22 mutations on substrate and inhibitor binding for human dihydrofolate reductase.
    Ercikan E; Waltham M; Dicker A; Schweitzer B; Bertino JR
    Adv Exp Med Biol; 1993; 338():515-9. PubMed ID: 8304170
    [No Abstract]   [Full Text] [Related]  

  • 10. Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate.
    Leng ZH; Zhuang QF; Li YC; He Z; Chen Z; Huang SP; Jia HY; Zhou JW; Liu Y; Du LB
    Carbohydr Polym; 2013 Oct; 98(1):1173-8. PubMed ID: 23987460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular perspective: methotrexate.
    Goodsell DS
    Stem Cells; 1999; 17(5):314-5. PubMed ID: 10527466
    [No Abstract]   [Full Text] [Related]  

  • 12. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.
    He X; Alves CS; Oliveira N; Rodrigues J; Zhu J; Bányai I; Tomás H; Shi X
    Colloids Surf B Biointerfaces; 2015 Jan; 125():82-9. PubMed ID: 25437067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naked-eye nanobiosensor for therapeutic drug monitoring of methotrexate.
    Yockell-Lelièvre H; Bukar N; Toulouse JL; Pelletier JN; Masson JF
    Analyst; 2016 Jan; 141(2):697-703. PubMed ID: 26229988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, expression, and characterization of Mycobacterium tuberculosis dihydrofolate reductase.
    White EL; Ross LJ; Cunningham A; Escuyer V
    FEMS Microbiol Lett; 2004 Mar; 232(1):101-5. PubMed ID: 15019741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic investigation of methotrexate resistant human dihydrofolate reductase (hDHFR) mutants at Phe31.
    Chunduru SK; Appleman JR; Blakley RL
    Adv Exp Med Biol; 1993; 338():507-10. PubMed ID: 8304168
    [No Abstract]   [Full Text] [Related]  

  • 16. Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway.
    Johnston JA; Johnson ES; Waller PR; Varshavsky A
    J Biol Chem; 1995 Apr; 270(14):8172-8. PubMed ID: 7713922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new fluorescent dihydrofolate reductase probe for studies of methotrexate resistance.
    Rosowsky A; Wright JE; Shapiro H; Beardsley P; Lazarus H
    J Biol Chem; 1982 Dec; 257(23):14162-7. PubMed ID: 7142200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers.
    Lewis WS; Cody V; Galitsky N; Luft JR; Pangborn W; Chunduru SK; Spencer HT; Appleman JR; Blakley RL
    J Biol Chem; 1995 Mar; 270(10):5057-64. PubMed ID: 7890613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The recovery of liver tetrahydrofolate dehydrogenase activity from inhibition by methotrexate.
    Stanley BG; Neal GE; Williams DC
    Biochem Pharmacol; 1969 Jan; 18(1):159-71. PubMed ID: 5780985
    [No Abstract]   [Full Text] [Related]  

  • 20. Methods and mechanisms for the development of MTX resistance in human lymphoid cells.
    Alam A; Geddes AJ; North AC
    Int J Cancer; 1983 Jan; 31(1):45-50. PubMed ID: 6832848
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.