BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 21455924)

  • 1. Stabilization of a metabolic enzyme by library selection in Thermus thermophilus.
    Schwab T; Sterner R
    Chembiochem; 2011 Jul; 12(10):1581-8. PubMed ID: 21455924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rationally designed monomeric variant of anthranilate phosphoribosyltransferase from Sulfolobus solfataricus is as active as the dimeric wild-type enzyme but less thermostable.
    Schwab T; Skegro D; Mayans O; Sterner R
    J Mol Biol; 2008 Feb; 376(2):506-16. PubMed ID: 18164726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of anthranilate phosphoribosyltransferase from Sulfolobus solfataricus by removal of magnesium inhibition and acceleration of product release .
    Schlee S; Deuss M; Bruning M; Ivens A; Schwab T; Hellmann N; Mayans O; Sterner R
    Biochemistry; 2009 Jun; 48(23):5199-209. PubMed ID: 19385665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental assessment of the importance of amino acid positions identified by an entropy-based correlation analysis of multiple-sequence alignments.
    Dietrich S; Borst N; Schlee S; Schneider D; Janda JO; Sterner R; Merkl R
    Biochemistry; 2012 Jul; 51(28):5633-41. PubMed ID: 22737967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel stand-alone RAM domain protein-mediated catalytic control of anthranilate phosphoribosyltransferase in tryptophan biosynthesis in Thermus thermophilus.
    Kubota T; Matsushita H; Tomita T; Kosono S; Yoshida M; Kuzuyama T; Nishiyama M
    Extremophiles; 2017 Jan; 21(1):73-83. PubMed ID: 27757697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random mutagenesis improves the low-temperature activity of the tetrameric 3-isopropylmalate dehydrogenase from the hyperthermophile Sulfolobus tokodaii.
    Sasaki M; Uno M; Akanuma S; Yamagishi A
    Protein Eng Des Sel; 2008 Dec; 21(12):721-7. PubMed ID: 18854331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization and mutational improvement of a thermophilic esterase from Sulfolobus solfataricus P2.
    Shang YS; Zhang XE; Wang XD; Guo YC; Zhang ZP; Zhou YF
    Biotechnol Lett; 2010 Aug; 32(8):1151-7. PubMed ID: 20386955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel hyperthermostable 5'-deoxy-5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus.
    Cacciapuoti G; Forte S; Moretti MA; Brio A; Zappia V; Porcelli M
    FEBS J; 2005 Apr; 272(8):1886-99. PubMed ID: 15819883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional IR correlation spectroscopy of mutants of the beta-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus identifies the mechanism of quaternary structure stabilization and unravels the sequence of thermal unfolding events.
    Ausili A; Di Lauro B; Cobucci-Ponzano B; Bertoli E; Scirè A; Rossi M; Tanfani F; Moracci M
    Biochem J; 2004 Nov; 384(Pt 1):69-78. PubMed ID: 15283674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-induced conformational change at the catalytic site of Sulfolobus solfataricus alcohol dehydrogenase highlighted by Asn249Tyr substitution. A hydrogen/deuterium exchange, kinetic, and fluorescence quenching study.
    Secundo F; Russo C; Giordano A; Carrea G; Rossi M; Raia CA
    Biochemistry; 2005 Aug; 44(33):11040-8. PubMed ID: 16101287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase.
    Sommaruga S; De Palma A; Mauri PL; Trisciani M; Basilico F; Martelli PL; Casadio R; Tortora P; Occhipinti E
    Proteins; 2008 Jun; 71(4):1843-52. PubMed ID: 18175312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of the destabilization produced by an amino-terminal tag in the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus.
    Ausili A; Cobucci-Ponzano B; Di Lauro B; D'Avino R; Scirè A; Rossi M; Tanfani F; Moracci M
    Biochimie; 2006 Jul; 88(7):807-17. PubMed ID: 16494988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and mutational analysis of substrate complexation by anthranilate phosphoribosyltransferase from Sulfolobus solfataricus.
    Marino M; Deuss M; Svergun DI; Konarev PV; Sterner R; Mayans O
    J Biol Chem; 2006 Jul; 281(30):21410-21421. PubMed ID: 16714288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization and homology modeling of a purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus: insights into mechanisms of protein stabilization.
    Porcelli M; Peluso I; Marabotti A; Facchiano A; Cacciapuoti G
    Arch Biochem Biophys; 2009 Mar; 483(1):55-65. PubMed ID: 19121283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The extreme thermostable pyrophosphatase from Sulfolobus acidocaldarius: enzymatic and comparative biophysical characterization.
    Hansen T; Urbanke C; Leppänen VM; Goldman A; Brandenburg K; Schäfer G
    Arch Biochem Biophys; 1999 Mar; 363(1):135-47. PubMed ID: 10049508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremely thermophilic translation system in the common ancestor commonote: ancestral mutants of Glycyl-tRNA synthetase from the extreme thermophile Thermus thermophilus.
    Shimizu H; Yokobori S; Ohkuri T; Yokogawa T; Nishikawa K; Yamagishi A
    J Mol Biol; 2007 Jun; 369(4):1060-9. PubMed ID: 17477933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic network at the C-terminus of the beta-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: Functional role in the quaternary structure thermal stabilization.
    Cobucci-Ponzano B; Moracci M; Di Lauro B; Ciaramella M; D'Avino R; Rossi M
    Proteins; 2002 Jul; 48(1):98-106. PubMed ID: 12012341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-adenosylhomocysteine hydrolase from the archaeon Pyrococcus furiosus: biochemical characterization and analysis of protein structure by comparative molecular modeling.
    Porcelli M; Moretti MA; Concilio L; Forte S; Merlino A; Graziano G; Cacciapuoti G
    Proteins; 2005 Mar; 58(4):815-25. PubMed ID: 15645450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and catalytic response to temperature and cosolvents of carboxylesterase EST1 from the extremely thermoacidophilic archaeon Sulfolobus solfataricus P1.
    Sehgal AC; Tompson R; Cavanagh J; Kelly RM
    Biotechnol Bioeng; 2002 Dec; 80(7):784-93. PubMed ID: 12402324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of multiple ancestral residues on the Thermus thermophilus 3-isopropylmalate dehydrogenase.
    Watanabe K; Yamagishi A
    FEBS Lett; 2006 Jul; 580(16):3867-71. PubMed ID: 16797545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.