These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 21455936)
1. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency. Carter B; Squillace P; Gilcrease PC; Menkhaus TJ Biotechnol Bioeng; 2011 Sep; 108(9):2053-60. PubMed ID: 21455936 [TBL] [Abstract][Full Text] [Related]
2. Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies. Gurram RN; Datta S; Lin YJ; Snyder SW; Menkhaus TJ Bioresour Technol; 2011 Sep; 102(17):7850-9. PubMed ID: 21683583 [TBL] [Abstract][Full Text] [Related]
3. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte. Carter B; Gilcrease PC; Menkhaus TJ Biotechnol Bioeng; 2011 Sep; 108(9):2046-52. PubMed ID: 21455937 [TBL] [Abstract][Full Text] [Related]
4. A sustainable woody biomass biorefinery. Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164 [TBL] [Abstract][Full Text] [Related]
5. Continuous enzymatic hydrolysis of lignocellulosic biomass with simultaneous detoxification and enzyme recovery. Gurram RN; Menkhaus TJ Appl Biochem Biotechnol; 2014 Jul; 173(6):1319-35. PubMed ID: 24793195 [TBL] [Abstract][Full Text] [Related]
6. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Parawira W; Tekere M Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164 [TBL] [Abstract][Full Text] [Related]
7. Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine. Tu M; Zhang X; Paice M; McFarlane P; Saddler JN Biotechnol Prog; 2009; 25(4):1122-9. PubMed ID: 19626698 [TBL] [Abstract][Full Text] [Related]
8. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119 [TBL] [Abstract][Full Text] [Related]
9. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption. Jeong SY; Trinh LT; Lee HJ; Lee JW Bioresour Technol; 2014; 152():444-9. PubMed ID: 24321607 [TBL] [Abstract][Full Text] [Related]
10. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Lu Y; Warner R; Sedlak M; Ho N; Mosier NS Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980 [TBL] [Abstract][Full Text] [Related]
11. Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass. Sainio T; Turku I; Heinonen J Bioresour Technol; 2011 May; 102(10):6048-57. PubMed ID: 21441022 [TBL] [Abstract][Full Text] [Related]
12. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification. Tian S; Luo XL; Yang XS; Zhu JY Bioresour Technol; 2010 Nov; 101(22):8678-85. PubMed ID: 20620049 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of polymeric adsorbent resins for efficient detoxification of liquor generated during acid pretreatment of lignocellulosic biomass. Sandhya SV; Kiran K; Kuttiraja M; Preeti VE; Sindhu R; Vani S; Kumar SR; Pandey A; Binod P Indian J Exp Biol; 2013 Nov; 51(11):1012-7. PubMed ID: 24416939 [TBL] [Abstract][Full Text] [Related]
14. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Lu Y; Wang Y; Xu G; Chu J; Zhuang Y; Zhang S Appl Biochem Biotechnol; 2010 Jan; 160(2):360-9. PubMed ID: 18626577 [TBL] [Abstract][Full Text] [Related]
15. A comparison of different dilute solution explosions pretreatment for conversion of distillers' grains into ethanol. Zhang J; Zhang WX; Wu ZY; Yang J; Liu YH; Zhong X; Deng Y Prep Biochem Biotechnol; 2013; 43(1):1-21. PubMed ID: 23215651 [TBL] [Abstract][Full Text] [Related]
16. Bioethanol production from Ipomoea carnea biomass using a potential hybrid yeast strain. Kumari R; Pramanik K Appl Biochem Biotechnol; 2013 Oct; 171(3):771-85. PubMed ID: 23892623 [TBL] [Abstract][Full Text] [Related]
17. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. Talebnia F; Taherzadeh MJ J Biotechnol; 2006 Sep; 125(3):377-84. PubMed ID: 16621080 [TBL] [Abstract][Full Text] [Related]
18. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Kim Y; Ximenes E; Mosier NS; Ladisch MR Enzyme Microb Technol; 2011 Apr; 48(4-5):408-15. PubMed ID: 22112958 [TBL] [Abstract][Full Text] [Related]
19. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols. Dowe N Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626 [TBL] [Abstract][Full Text] [Related]
20. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Fujitomi K; Sanda T; Hasunuma T; Kondo A Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]