These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21456023)

  • 21. An inhibitory glycinergic projection from the cochlear nucleus to the lateral superior olive.
    Weingarten DJ; Sebastian E; Winkelhoff J; Patschull-Keiner N; Fischer AU; Wadle SL; Friauf E; Hirtz JJ
    Front Neural Circuits; 2023; 17():1307283. PubMed ID: 38107610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons.
    Gazula VR; Strumbos JG; Mei X; Chen H; Rahner C; Kaczmarek LK
    J Comp Neurol; 2010 Aug; 518(16):3205-20. PubMed ID: 20575068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tonotopic alterations in inhibitory input to the medial nucleus of the trapezoid body in a mouse model of Fragile X syndrome.
    McCullagh EA; Salcedo E; Huntsman MM; Klug A
    J Comp Neurol; 2017 Nov; 525(16):3543-3562. PubMed ID: 28744893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression and Neurotransmitter Association of the Synaptic Calcium Sensor Synaptotagmin in the Avian Auditory Brain Stem.
    MacLeod KM; Pandya S
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):701-720. PubMed ID: 35999323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional refinement in the projection from ventral cochlear nucleus to lateral superior olive precedes hearing onset in rat.
    Case DT; Zhao X; Gillespie DC
    PLoS One; 2011; 6(6):e20756. PubMed ID: 21694776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Input from the medial nucleus of trapezoid body to an interaural level detector.
    Tsuchitani C
    Hear Res; 1997 Mar; 105(1-2):211-24. PubMed ID: 9083818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement.
    Bach EC; Kandler K
    Sci Rep; 2020 Oct; 10(1):16899. PubMed ID: 33037263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gain adjustment of inhibitory synapses in the auditory system.
    Kotak VC; Sanes DH
    Biol Cybern; 2003 Nov; 89(5):363-70. PubMed ID: 14669016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus.
    Lee J; Clause A; Kandler K
    J Neurosci; 2023 Nov; 43(46):7766-7779. PubMed ID: 37734946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body.
    Zhang C; Beebe NL; Schofield BR; Pecka M; Burger RM
    J Neurosci; 2021 Jan; 41(4):674-688. PubMed ID: 33268542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation.
    Kim G; Kandler K
    Nat Neurosci; 2003 Mar; 6(3):282-90. PubMed ID: 12577063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamate co-release at GABA/glycinergic synapses is crucial for the refinement of an inhibitory map.
    Noh J; Seal RP; Garver JA; Edwards RH; Kandler K
    Nat Neurosci; 2010 Feb; 13(2):232-8. PubMed ID: 20081852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synaptotagmin-1, -2, and -9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons.
    Xu J; Mashimo T; Südhof TC
    Neuron; 2007 May; 54(4):567-81. PubMed ID: 17521570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunohistochemical evidence for synaptic release of glutamate from orexin terminals in the locus coeruleus.
    Henny P; Brischoux F; Mainville L; Stroh T; Jones BE
    Neuroscience; 2010 Sep; 169(3):1150-7. PubMed ID: 20540992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Connections of the superior olivary complex in the rufous horseshoe bat Rhinolophus rouxi.
    Casseday JH; Covey E; Vater M
    J Comp Neurol; 1988 Dec; 278(3):313-29. PubMed ID: 2464005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organization of the disynaptic pathway from the anteroventral cochlear nucleus to the lateral superior olivary nucleus in the ferret.
    Henkel CK; Gabriele ML
    Anat Embryol (Berl); 1999 Feb; 199(2):149-60. PubMed ID: 9930621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutamate co-transmission from developing medial nucleus of the trapezoid body--lateral superior olive synapses is cochlear dependent in kanamycin-treated rats.
    Lee JH; Pradhan J; Maskey D; Park KS; Hong SH; Suh MW; Kim MJ; Ahn SC
    Biochem Biophys Res Commun; 2011 Feb; 405(2):162-7. PubMed ID: 21215254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunocytochemical and lesion studies support the hypothesis that the projection from the medial nucleus of the trapezoid body to the lateral superior olive is glycinergic.
    Bledsoe SC; Snead CR; Helfert RH; Prasad V; Wenthold RJ; Altschuler RA
    Brain Res; 1990 May; 517(1-2):189-94. PubMed ID: 2375987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig.
    Helfert RH; Juiz JM; Bledsoe SC; Bonneau JM; Wenthold RJ; Altschuler RA
    J Comp Neurol; 1992 Sep; 323(3):305-25. PubMed ID: 1360986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.