BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21456121)

  • 1. Sputtered highly ordered TiO2 nanorod arrays and their applications as the electrode in dye-sensitized solar cells.
    Meng L; Ma A; Ying P; Feng Z; Li C
    J Nanosci Nanotechnol; 2011 Feb; 11(2):929-34. PubMed ID: 21456121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode.
    Hafez H; Lan Z; Li Q; Wu J
    Nanotechnol Sci Appl; 2010 Aug; 3():45-51. PubMed ID: 24198470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photovoltaic performance of dye-sensitized solar cell low temperature growth of ZnO nanorods using chemical bath deposition.
    Lee JG; Choi YC; Lee DK; Ahn KS; Kim JH
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3469-72. PubMed ID: 22849148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells.
    Hu H; Ding J; Zhang S; Li Y; Bai L; Yuan N
    Nanoscale Res Lett; 2013 Jan; 8(1):10. PubMed ID: 23286551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of nanorod-like anatase TiO2 nanocrystals and their photovoltaic properties.
    Zhang Q; Li S; Li Y; Wang H
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11109-13. PubMed ID: 22409066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of TiCl4 post-treatment condition on TiO2 electrode for enhancement photovoltaic efficiency of dye-sensitized solar cells.
    Eom TS; Kim KH; Bark CW; Choi HW
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7705-9. PubMed ID: 25942852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of applied voltage on anodized TiO2 nanotube arrays and their performance on dye sensitized solar cells.
    Wang H; Li H; Wang J; Wu J; Liu M
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4183-8. PubMed ID: 23862470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays.
    Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D
    Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion.
    Kim DH; Seong WM; Park IJ; Yoo ES; Shin SS; Kim JS; Jung HS; Lee S; Hong KS
    Nanoscale; 2013 Dec; 5(23):11725-32. PubMed ID: 24114150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inclined Substrate Deposition of Nanostructured TiO
    Meng L; Yang T
    Molecules; 2021 May; 26(11):. PubMed ID: 34073697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application.
    Peng W; Yanagida M; Han L; Ahmed S
    Nanotechnology; 2011 Jul; 22(27):275709. PubMed ID: 21597134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of photovoltaic properties of TiO2 electrodes prepared with nanoparticles and nanorods.
    Nam SH; Ju DW; Boo JH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9406-10. PubMed ID: 25971074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO
    Mali SS; Hong CK; Inamdar AI; Im H; Shim SE
    Nanoscale; 2017 Mar; 9(9):3095-3104. PubMed ID: 28195297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells.
    Chen HY; Zhang TL; Fan J; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9205-11. PubMed ID: 23962052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of calcination treatment on the morphology, crystallinity, and photoelectric properties of all-solid-state dye-sensitized solar cells assembled by TiO2 nanorod arrays.
    Sun X; Sun Q; Li Y; Sui L; Dong L
    Phys Chem Chem Phys; 2013 Nov; 15(42):18716-20. PubMed ID: 24071636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion.
    Gan X; Li X; Gao X; Qiu J; Zhuge F
    Nanotechnology; 2011 Jul; 22(30):305601. PubMed ID: 21697580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell (DSSC) using a nanoparticle deposition system (NPDS).
    Kim MS; Chun DM; Choi JO; Lee JC; Kim YH; Kim KS; Lee CS; Ahn SH
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3384-8. PubMed ID: 22849129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step growth of well-aligned TiO2 nanorod arrays for flexible dye-sensitized solar cells.
    Chen X; Tang Q; Zhao Z; Wang X; He B; Yu L
    Chem Commun (Camb); 2015 Feb; 51(10):1945-8. PubMed ID: 25531300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of TiO2 nanoparticles coated multi-wall carbon nanotube to dye-sensitized solar cells.
    Chang H; Kao MJ; Huang KD; Hsieh TJ; Chien SH
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7671-5. PubMed ID: 21138007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film.
    Jiu J; Isoda S; Wang F; Adachi M
    J Phys Chem B; 2006 Feb; 110(5):2087-92. PubMed ID: 16471788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.