These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21456177)

  • 21. Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor.
    Li BR; Chen CW; Yang WL; Lin TY; Pan CY; Chen YT
    Biosens Bioelectron; 2013 Jul; 45():252-9. PubMed ID: 23500372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoconductivity, pH Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors.
    Gasparyan F; Zadorozhnyi I; Khondkaryan H; Arakelyan A; Vitusevich S
    Nanoscale Res Lett; 2018 Mar; 13(1):87. PubMed ID: 29589128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal Geometry Aspect Ratio of Ellipse-Shaped- Surrounding-Gate Nanowire Field Effect Transistors.
    Li Y
    J Nanosci Nanotechnol; 2016 Jan; 16(1):920-3. PubMed ID: 27398546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppressing the excess OFF-state current of short-channel InAs nanowire field-effect transistors by nanoscale partial-gate.
    Yang W; Pan D; Shen R; Wang X; Zhao J; Chen Q
    Nanotechnology; 2018 Oct; 29(41):415203. PubMed ID: 30052527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced fabrication of Si nanowire FET structures by means of a parallel approach.
    Li J; Pud S; Mayer D; Vitusevich S
    Nanotechnology; 2014 Jul; 25(27):275302. PubMed ID: 24959696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of channel doping concentration for enhancing the sensitivity of 'top-down' fabricated Si nanochannel FET biosensors.
    Park CW; Ahn CG; Yang JH; Baek IB; Ah CS; Kim A; Kim TY; Sung GY
    Nanotechnology; 2009 Nov; 20(47):475501. PubMed ID: 19858563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and characterization of directly-assembled ZnO nanowire field effect transistors with polymer gate dielectrics.
    Yoon A; Hong WK; Lee T
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4101-5. PubMed ID: 18047128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors.
    Lu N; Gao A; Dai P; Li T; Wang Y; Gao X; Song S; Fan C; Wang Y
    Methods; 2013 Oct; 63(3):212-8. PubMed ID: 23886908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors.
    Mao LF
    Nanotechnology; 2009 Jul; 20(27):275203. PubMed ID: 19528675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A facile route to Si nanowire gate-all-around field effect transistors with a steep subthreshold slope.
    Lee JH; Kim BS; Choi SH; Jang Y; Hwang SW; Whang D
    Nanoscale; 2013 Oct; 5(19):8968-72. PubMed ID: 23969942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis.
    Kong T; Su R; Zhang B; Zhang Q; Cheng G
    Biosens Bioelectron; 2012 Apr; 34(1):267-72. PubMed ID: 22386490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors.
    He J; Zhu J; Gong C; Qi J; Xiao H; Jiang B; Zhao Y
    PLoS One; 2015; 10(12):e0145160. PubMed ID: 26709827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecularly-thin anatase field-effect transistors fabricated through the solid state transformation of titania nanosheets.
    Sekizaki S; Osada M; Nagashio K
    Nanoscale; 2017 May; 9(19):6471-6477. PubMed ID: 28466951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations.
    Khalilov U; Bogaerts A; Neyts EC
    Acc Chem Res; 2017 Apr; 50(4):796-804. PubMed ID: 28248480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Memory characteristics of silicon nanowire transistors generated by weak impact ionization.
    Lim D; Kim M; Kim Y; Kim S
    Sci Rep; 2017 Sep; 7(1):12436. PubMed ID: 28963456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short channel monolayer MoS
    Bi K; Liu H; Chen Y; Luo F; Shu Z; Lin J; Liu S; Liu H; Zeng Z; Dai P; Zhu M; Duan H
    Nanotechnology; 2019 Jul; 30(29):295301. PubMed ID: 30917350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined AFM nano-machining and reactive ion etching to fabricate high aspect ratio structures.
    Peng P; Shi T; Liao G; Tang Z
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7287-90. PubMed ID: 21137916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient.
    Barreda JL; Keiper TD; Zhang M; Xiong P
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):12046-12053. PubMed ID: 28274114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discriminative power of chemically sensitive silicon nanowire field effect transistors to volatile organic compounds.
    Ermanok R; Assad O; Zigelboim K; Wang B; Haick H
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11172-83. PubMed ID: 24144671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ambipolar and unipolar PbSe nanowire field-effect transistors.
    Kim DK; Vemulkar TR; Oh SJ; Koh WK; Murray CB; Kagan CR
    ACS Nano; 2011 Apr; 5(4):3230-6. PubMed ID: 21405024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.