BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21456209)

  • 1. Studies on nanosized iron based modified catalyst for Fischer-Tropsch synthesis application.
    Park M; Kang JS; Na KP; Lee SD; Awate SV; Moon DJ
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1447-50. PubMed ID: 21456209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Cobalt Loading on Fischer Tropsch Synthesis Over Silicon Carbide Supported Catalyst.
    Lee JS; Jung JS; Moon DJ
    J Nanosci Nanotechnol; 2015 Jan; 15(1):396-9. PubMed ID: 26328368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts.
    Ali S; Mohd Zabidi NA; Subbarao D
    Chem Cent J; 2011 Nov; 5():68. PubMed ID: 22047220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Conversion of Syngas to Olefins via Novel Cu-Promoted Fe/RGO and Fe-Mn/RGO Fischer-Tropsch Catalysts: Fixed-Bed Reactor vs Slurry-Bed Reactor.
    Nasser AH; El-Bery HM; ELnaggar H; Basha IK; El-Moneim AA
    ACS Omega; 2021 Nov; 6(46):31099-31111. PubMed ID: 34841152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe-based heterogeneous catalysts for the Fischer-Tropsch reaction: Sonochemical synthesis and bench-scale experimental tests.
    Comazzi A; Pirola C; Longhi M; Bianchi CL; Suslick KS
    Ultrason Sonochem; 2017 Jan; 34():774-780. PubMed ID: 27773304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the Fischer-Tropsch synthesis on nano-precipitated iron-based catalysts with different particle sizes.
    Han Z; Qian W; Ma H; Wu X; Zhang H; Sun Q; Ying W
    RSC Adv; 2020 Nov; 10(70):42903-42911. PubMed ID: 35514885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fischer-Tropsch synthesis with Fe/Cu/La/SiO2 nano-structured catalyst.
    Pour AN; Taghipoor S; Shekarriz M; Shahri SM; Zamani Y
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4425-9. PubMed ID: 19916468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts.
    Han W; Zhang P; Pan X; Tang Z; Lu G
    J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocrystalline Ferrihydrite-Based Catalysts for Fischer-Tropsch Synthesis: Part I. Reduction and Carburization Behavior.
    Chun DH; Park JC; Rhim GB; Lee HT; Yang JI; Jung H
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1660-4. PubMed ID: 27433641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Sm on Fe-Mn catalysts for Fischer-Tropsch synthesis.
    Han Z; Qian W; Ma H; Zhang H; Sun Q; Ying W
    RSC Adv; 2019 Oct; 9(55):32240-32246. PubMed ID: 35530804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of promoter type and synthesis method on catalytic performance of Fe-Mn based FT-olefin catalysts.
    Gümüşlü Gür G; Atik Ö
    Turk J Chem; 2022; 46(4):941-955. PubMed ID: 37538761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the Role of Nitrogen in the Feed for Fischer-Tropsch Synthesis Under Fixed-Bed Reactor System.
    Hong GH; Jung JS; Kim NY; Lee SY; Moon DJ
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1894-7. PubMed ID: 27433695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study.
    Bulavchenko OA; Vinokurov ZS; Saraev AA; Tsapina AM; Trigub AL; Gerasimov EY; Gladky AY; Fedorov AV; Yakovlev VA; Kaichev VV
    Inorg Chem; 2019 Apr; 58(8):4842-4850. PubMed ID: 30946575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of copper precursors in the synthesis of higher alcohols from syngas over CuZnAl catalysts without promoters.
    Liu YJ; Deng X; Jia L; Huang W
    Phys Chem Chem Phys; 2018 Jul; 20(27):18790-18799. PubMed ID: 29963668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic combustion of benzene over nanosized LaMnO3 perovskite oxides.
    Jung WY; Lim KT; Lee GD; Lee MS; Hong SS
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6120-4. PubMed ID: 24205612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe
    Abbas M; Zhang J; Lin K; Chen J
    Ultrason Sonochem; 2018 Apr; 42():271-282. PubMed ID: 29429670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance.
    Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM
    J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of low carbon olefins on a core-shell K-Fe
    Liu Y; Shao W; Zheng Y; Zhang C; Zhou W; Zhang X; Liu Y
    RSC Adv; 2020 Jul; 10(44):26451-26459. PubMed ID: 35519778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse water gas shift reaction over a Cu/ZnO catalyst supported on regenerated spent bleaching earth (RSBE) in a slurry reactor: the effect of the Cu/Zn ratio on the catalytic activity.
    Phey Phey ML; Tuan Abdullah TA; Md Ali UF; Mohamud MY; Ikram M; Nabgan W
    RSC Adv; 2023 Jan; 13(5):3039-3055. PubMed ID: 36756434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of higher alcohols over highly dispersed Cu-Fe based catalysts derived from layered double hydroxides.
    Han X; Fang K; Zhou J; Zhao L; Sun Y
    J Colloid Interface Sci; 2016 May; 470():162-171. PubMed ID: 26943001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.