These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21456211)

  • 1. Tunable synthesis of cuprous and cupric oxide nanotubes from electrodeposited copper nanowires.
    Lee YI; Goo YS; Chang CH; Lee KJ; Myung NV; Choa YH
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1455-8. PubMed ID: 21456211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Sn doped CuO nanotubes from core-shell Cu/SnO(2) nanowires by the Kirkendall effect.
    Lai M; Mubeen S; Chartuprayoon N; Mulchandani A; Deshusses MA; Myung NV
    Nanotechnology; 2010 Jul; 21(29):295601. PubMed ID: 20585175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions.
    Mel AA; Tessier PY; Buffiere M; Gautron E; Ding J; Du K; Choi CH; Konstantinidis S; Snyders R; Bittencourt C; Molina-Luna L
    Small; 2016 Jun; 12(21):2885-92. PubMed ID: 27061060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol).
    Chirizzi D; Guascito MR; Filippo E; Tepore A
    Talanta; 2016 Jan; 147():124-31. PubMed ID: 26592586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environment-Modulated Crystallization of Cu
    Harilal M; G Krishnan S; Pal B; Reddy MV; Ab Rahim MH; Yusoff MM; Jose R
    Langmuir; 2018 Feb; 34(5):1873-1882. PubMed ID: 29345940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joining copper oxide nanotube arrays driven by the nanoscale Kirkendall effect.
    Chun SR; Sasangka WA; Ng MZ; Liu Q; Du A; Zhu J; Ng CM; Liu ZQ; Chiam SY; Gan CL
    Small; 2013 Aug; 9(15):2546-52, 2545. PubMed ID: 23401318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-initiated atom transfer radical polymerization-induced transformation of selenium nanowires into copper selenide@polystyrene core-shell nanowires.
    Wang MC; Gates BD
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9546-53. PubMed ID: 24041404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random networks of core-shell-like Cu-Cu
    Hajimammadov R; Bykov A; Popov A; Juhasz KL; Lorite GS; Mohl M; Kukovecz A; Huuhtanen M; Kordas K
    Sci Rep; 2018 Mar; 8(1):4708. PubMed ID: 29549337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Cuprous Oxides Thin Films to be used as Thermoelectric Touch Detectors.
    Figueira J; Loureiro J; Marques J; Bianchi C; Duarte P; Ruoho M; Tittonen I; Ferreira I
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6520-6529. PubMed ID: 28111939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of Fabrication Methods, Physical Properties, and Applications of Nanostructured Copper Oxides Formed via Electrochemical Oxidation.
    Stepniowski WJ; Misiolek WZ
    Nanomaterials (Basel); 2018 May; 8(6):. PubMed ID: 29844274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single CuO/Cu
    Lupan O; Ababii N; Mishra AK; Gronenberg O; Vahl A; Schürmann U; Duppel V; Krüger H; Chow L; Kienle L; Faupel F; Adelung R; de Leeuw NH; Hansen S
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42248-42263. PubMed ID: 32813500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflectometry-Ellipsometry Reveals Thickness, Growth Rate, and Phase Composition in Oxidation of Copper.
    Diaz Leon JJ; Fryauf DM; Cormia RD; Zhang MX; Samuels K; Williams RS; Kobayashi NP
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22337-44. PubMed ID: 27505052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires.
    Ye S; Rathmell AR; Ha YC; Wilson AR; Wiley BJ
    Small; 2014 May; 10(9):1771-8. PubMed ID: 24616369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of CuO Nanotubes with Controlled Diameters by Chemical Transformation of Cu Nanowires.
    Kim S; Lee YI
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8166-70. PubMed ID: 26726481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance.
    Hou L; Zhang C; Li L; Du C; Li X; Kang XF; Chen W
    Talanta; 2018 Oct; 188():41-49. PubMed ID: 30029395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable morphology and conductivity of electrodeposited Cu₂O thin film: effect of surfactants.
    Yang Y; Han J; Ning X; Cao W; Xu W; Guo L
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22534-43. PubMed ID: 25453498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ synthesis of CuO and Cu nanostructures with promising electrochemical and wettability properties.
    Zhang Q; Xu D; Zhou X; Wu X; Zhang K
    Small; 2014 Mar; 10(5):935-43. PubMed ID: 24174010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of CuO Nanowire Growth on Different Copper Surfaces.
    Fritz-Popovski G; Sosada-Ludwikowska F; Köck A; Keckes J; Maier GA
    Sci Rep; 2019 Jan; 9(1):807. PubMed ID: 30692601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.