These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21456220)

  • 21. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.
    Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K
    Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-temperature sintering of silver nanoparticles on paper by surface modification.
    Zhang L; Feng P; Xie S; Wang Y; Ye Z; Fu Z; Wang Q; Ma X; Zhang J; He P; Li K; Zhao W
    Nanotechnology; 2019 Dec; 30(50):505303. PubMed ID: 31509803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screen-printed Cu circuit for low-Cost fabrication and its electrochemical migration characteristics.
    Jung KH; Kim KS; Park BG; Jung SB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9493-7. PubMed ID: 25971089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards practical application of paper based printed circuits: capillarity effectively enhances conductivity of the thermoplastic electrically conductive adhesives.
    Wu H; Chiang SW; Lin W; Yang C; Li Z; Liu J; Cui X; Kang F; Wong CP
    Sci Rep; 2014 Sep; 4():6275. PubMed ID: 25182052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films.
    Kim C; Nogi M; Suganuma K; Yamato Y
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2168-73. PubMed ID: 22452572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films.
    Stewart IE; Kim MJ; Wiley BJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1870-1876. PubMed ID: 27981831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tensile characteristics of metal nanoparticle films on flexible polymer substrates for printed electronics applications.
    Kim S; Won S; Sim GD; Park I; Lee SB
    Nanotechnology; 2013 Mar; 24(8):085701. PubMed ID: 23376972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid Laser Printing of Paper-Based Multilayer Circuits.
    Huang GW; Feng QP; Xiao HM; Li N; Fu SY
    ACS Nano; 2016 Sep; 10(9):8895-903. PubMed ID: 27607561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast sintering of silver nanoparticle and flake layers by infrared module assistance in large area roll-to-roll gravure printing system.
    Park J; Kang HJ; Shin KH; Kang H
    Sci Rep; 2016 Oct; 6():34470. PubMed ID: 27713469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.
    Varghese T; Hollar C; Richardson J; Kempf N; Han C; Gamarachchi P; Estrada D; Mehta RJ; Zhang Y
    Sci Rep; 2016 Sep; 6():33135. PubMed ID: 27615036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Environmental Conditions on Interfacial Adhesion Between Screen-Printed Ag Film and Polyimide Substrate.
    Lee H; Bae BH; Kim G; Son K; Kim BJ; Park YB
    J Nanosci Nanotechnol; 2020 Jan; 20(1):206-212. PubMed ID: 31383157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silver Ink Formulations for Sinter-free Printing of Conductive Films.
    Black K; Singh J; Mehta D; Sung S; Sutcliffe CJ; Chalker PR
    Sci Rep; 2016 Feb; 6():20814. PubMed ID: 26857286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics.
    Kwon YT; Kim YS; Lee Y; Kwon S; Lim M; Song Y; Choa YH; Yeo WH
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44071-44079. PubMed ID: 30452228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells.
    Kim C; Lee G; Rhee C; Lee M
    Nanoscale; 2015 Apr; 7(15):6627-35. PubMed ID: 25794325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimisation of Substrate Angles for Multi-material and Multi-functional Inkjet Printing.
    Vaithilingam J; Saleh E; Wildman RD; Hague RJM; Tuck CJ
    Sci Rep; 2018 Jun; 8(1):9030. PubMed ID: 29899352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics.
    Chung WH; Hwang HJ; Lee SH; Kim HS
    Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of laser intensity on the characteristic of inkjet-printed silver nanoparticles during continuous laser sintering.
    Moon YJ; Kang H; Kang K; Hwang JY; Lee JH; Moon SJ
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8631-5. PubMed ID: 25958575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.