These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 21456240)
1. In-situ synchrotron X-ray scattering study of thin film growth by atomic layer deposition. Park YJ; Lee DR; Lee HH; Lee HB; Kim H; Park GC; Rhee SW; Baik S J Nanosci Nanotechnol; 2011 Feb; 11(2):1577-80. PubMed ID: 21456240 [TBL] [Abstract][Full Text] [Related]
2. An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis. Geyer SM; Methaapanon R; Johnson RW; Kim WH; Van Campen DG; Metha A; Bent SF Rev Sci Instrum; 2014 May; 85(5):055116. PubMed ID: 24880424 [TBL] [Abstract][Full Text] [Related]
3. Thermal evolution characterizatics of atomic layer deposition prepared TiO2 interfacial layer by synchrotron radiation X-ray scattering. Park YJ; Na KJ; Park GC; Kim RS; Anderson TJ J Nanosci Nanotechnol; 2013 Jun; 13(6):4207-10. PubMed ID: 23862474 [TBL] [Abstract][Full Text] [Related]
4. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes. Klug JA; Weimer MS; Emery JD; Yanguas-Gil A; Seifert S; Schlepütz CM; Martinson AB; Elam JW; Hock AS; Proslier T Rev Sci Instrum; 2015 Nov; 86(11):113901. PubMed ID: 26628145 [TBL] [Abstract][Full Text] [Related]
5. Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering. Dendooven J; Devloo-Casier K; Ide M; Grandfield K; Kurttepeli M; Ludwig KF; Bals S; Van Der Voort P; Detavernier C Nanoscale; 2014 Dec; 6(24):14991-8. PubMed ID: 25363826 [TBL] [Abstract][Full Text] [Related]
7. Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition. Dendooven J; Solano E; Minjauw MM; Van de Kerckhove K; Coati A; Fonda E; Portale G; Garreau Y; Detavernier C Rev Sci Instrum; 2016 Nov; 87(11):113905. PubMed ID: 27910568 [TBL] [Abstract][Full Text] [Related]
8. The power of in situ pulsed laser deposition synchrotron characterization for the detection of domain formation during growth of Ba0.5Sr0.5TiO3 on MgO. Bauer S; Lazarev S; Molinari A; Breitenstein A; Leufke P; Kruk R; Hahn H; Baumbach T J Synchrotron Radiat; 2014 Mar; 21(Pt 2):386-94. PubMed ID: 24562560 [TBL] [Abstract][Full Text] [Related]
9. Aluminum dihydride complexes and their unexpected application in atomic layer deposition of titanium carbonitride films. Blakeney KJ; Martin PD; Winter CH Dalton Trans; 2018 Aug; 47(32):10897-10905. PubMed ID: 30022173 [TBL] [Abstract][Full Text] [Related]
10. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction. Bürgi J; Neuenschwander R; Kellermann G; García Molleja J; Craievich AF; Feugeas J Rev Sci Instrum; 2013 Jan; 84(1):015102. PubMed ID: 23387690 [TBL] [Abstract][Full Text] [Related]
11. Chemical Bonding and Crystal Structure Schemes in Atomic/Molecular Layer Deposited Fe-Terephthalate Thin Films. Jussila T; Philip A; Rubio-Giménez V; Eklund K; Vasala S; Glatzel P; Lindén J; Motohashi T; Karttunen AJ; Ameloot R; Karppinen M Chem Mater; 2024 Jul; 36(13):6489-6503. PubMed ID: 39005530 [TBL] [Abstract][Full Text] [Related]
12. Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition. O'Donoghue R; Rechmann J; Aghaee M; Rogalla D; Becker HW; Creatore M; Wieck AD; Devi A Dalton Trans; 2017 Dec; 46(47):16551-16561. PubMed ID: 29160880 [TBL] [Abstract][Full Text] [Related]
13. A compact UHV deposition system for in situ study of ultrathin films via hard x-ray scattering and spectroscopy. Couet S; Diederich T; Schlage K; Röhlsberger R Rev Sci Instrum; 2008 Sep; 79(9):093908. PubMed ID: 19044429 [TBL] [Abstract][Full Text] [Related]
14. The In situ growth of Nanostructures on Surfaces (INS) endstation of the ESRF BM32 beamline: a combined UHV-CVD and MBE reactor for in situ X-ray scattering investigations of growing nanoparticles and semiconductor nanowires. Cantelli V; Geaymond O; Ulrich O; Zhou T; Blanc N; Renaud G J Synchrotron Radiat; 2015 May; 22(3):688-700. PubMed ID: 25931085 [TBL] [Abstract][Full Text] [Related]
15. Development of a scanning probe microscopy integrated atomic layer deposition system for Cao K; Hu Q; Cai J; Gong M; Yang J; Shan B; Chen R Rev Sci Instrum; 2018 Dec; 89(12):123702. PubMed ID: 30599563 [TBL] [Abstract][Full Text] [Related]
16. Probing the Atomic-Scale Structure of Amorphous Aluminum Oxide Grown by Atomic Layer Deposition. Young MJ; Bedford NM; Yanguas-Gil A; Letourneau S; Coile M; Mandia DJ; Aoun B; Cavanagh AS; George SM; Elam JW ACS Appl Mater Interfaces; 2020 May; 12(20):22804-22814. PubMed ID: 32309922 [TBL] [Abstract][Full Text] [Related]
17. Real-Time Characterization of the Nanostructure of a Metal Electrode on an Organic Thin Film: An In Situ X-Ray Scattering Study. Kim HJ; Lee HH; Park BG J Nanosci Nanotechnol; 2015 Jan; 15(1):317-20. PubMed ID: 26328351 [TBL] [Abstract][Full Text] [Related]
18. Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films. Kundrata I; Fröhlich K; Vančo L; Mičušík M; Bachmann J Beilstein J Nanotechnol; 2019; 10():1443-1451. PubMed ID: 31431856 [TBL] [Abstract][Full Text] [Related]
19. Surface mobility and impact of precursor dosing during atomic layer deposition of platinum: in situ monitoring of nucleation and island growth. Dendooven J; Van Daele M; Solano E; Ramachandran RK; Minjauw MM; Resta A; Vlad A; Garreau Y; Coati A; Portale G; Detavernier C Phys Chem Chem Phys; 2020 Nov; 22(43):24917-24933. PubMed ID: 33135021 [TBL] [Abstract][Full Text] [Related]
20. In situ x-ray reflectivity studies of dynamics and morphology during heteroepitaxial complex oxide thin film growth. Dale D; Suzuki Y; Brock JD J Phys Condens Matter; 2008 Jul; 20(26):264008. PubMed ID: 21694342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]