These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 21456263)
1. Adsorption behavior of carbon nanotubes on polystyrene surfaces. Yun YS; Bak H; Cho SY; Jin HJ J Nanosci Nanotechnol; 2011 Feb; 11(2):1668-71. PubMed ID: 21456263 [TBL] [Abstract][Full Text] [Related]
2. Strings of polymer microspheres stabilized by oxidized carbon nanotubes. Yin G; Zheng Z; Wang H; Du Q; Zhang H J Colloid Interface Sci; 2014 Jul; 426():137-44. PubMed ID: 24863776 [TBL] [Abstract][Full Text] [Related]
3. Locating carbon nanotubes (CNTs) at the surface of polymer microspheres using poly(vinyl alcohol) grafted CNTs as dispersion co-stabilizers. Thomassin JM; Molenberg I; Huynen I; Debuigne A; Alexandre M; Jérôme C; Detrembleur C Chem Commun (Camb); 2010 May; 46(19):3330-2. PubMed ID: 20386796 [TBL] [Abstract][Full Text] [Related]
4. Functionalization of Carbon Nanotubes in Polystyrene and Properties of Their Composites: A Review. Li H; Wang G; Wu Y; Jiang N; Niu K Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543376 [TBL] [Abstract][Full Text] [Related]
5. Adsorption and covalent binding of fibrinogen as a method for probing the chemical composition of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microsphere surfaces. Gosecka M; Chehimi MM; Basinska T; Slomkowski S; Makowski T Colloids Surf B Biointerfaces; 2017 Dec; 160():438-445. PubMed ID: 28985605 [TBL] [Abstract][Full Text] [Related]
6. Dispersion of Multi-Walled Carbon Nanotubes by Polymers with Carbazole Pendants. Liang C; Wang B; Chen J; Yong Q; Huang Y; Liao B J Phys Chem B; 2017 Sep; 121(35):8408-8416. PubMed ID: 28795811 [TBL] [Abstract][Full Text] [Related]
7. Impact of carbon nanotube morphology on phenanthrene adsorption. Apul OG; Shao T; Zhang S; Karanfil T Environ Toxicol Chem; 2012 Jan; 31(1):73-8. PubMed ID: 22002628 [TBL] [Abstract][Full Text] [Related]
8. Influence of surface oxidation of multiwalled carbon nanotubes on the adsorption affinity and capacity of polar and nonpolar organic compounds in aqueous phase. Wu W; Chen W; Lin D; Yang K Environ Sci Technol; 2012 May; 46(10):5446-54. PubMed ID: 22524230 [TBL] [Abstract][Full Text] [Related]
9. The role of steric interactions in dispersion of carbon nanotubes by poly(3-alkyl thiophenes) in organic solvents. Bar-Hen A; Bounioux C; Yerushalmi-Rozen R; Gonzalez Solveyra E; Szleifer I J Colloid Interface Sci; 2015 Aug; 452():62-68. PubMed ID: 25919430 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of bisphenol A on dispersed carbon nanotubes: Role of different dispersing agents. Li H; Wei C; Zhang D; Pan B Sci Total Environ; 2019 Mar; 655():807-813. PubMed ID: 30481707 [TBL] [Abstract][Full Text] [Related]
11. Diameter-selective alignment of carbon nanotubes on Si(001) stepped surfaces. Enkhtaivan B; Yoshimura M; Iwata J; Oshiyama A J Chem Phys; 2014 Jan; 140(4):044713. PubMed ID: 25669573 [TBL] [Abstract][Full Text] [Related]
12. Transition and stability of copolymer adsorption morphologies on the surface of carbon nanotubes and implications on their dispersion. Korayem AH; Barati MR; Simon GP; Williams T; Zhao XL; Stroeve P; Duan WH Langmuir; 2014 Aug; 30(33):10035-42. PubMed ID: 25079653 [TBL] [Abstract][Full Text] [Related]
13. The effects of confinement inside carbon nanotubes on catalysis. Pan X; Bao X Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038 [TBL] [Abstract][Full Text] [Related]
14. Effect of surface morphology change of polystyrene microspheres through etching on protein corona and phagocytic uptake. Chen B; Wu Z; Tian M; Feng T; Yuanwei C; Luo X J Biomater Sci Polym Ed; 2020 Dec; 31(18):2381-2395. PubMed ID: 32924847 [TBL] [Abstract][Full Text] [Related]
15. Continuous separation of serum proteins using a stirred cell charged with carboxylated and sulfonated microspheres. Lee JH; Yoon JY; Kim WS Biomed Chromatogr; 1998; 12(6):330-4. PubMed ID: 9861492 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of micron-sized BSA-imprinted polymers with outstanding adsorption capacity based on poly(glycidyl methacrylate)/polystyrene (PGMA/PS) anisotropic microspheres. Wang Y; Zhou J; Wu C; Tian L; Zhang B; Zhang Q J Mater Chem B; 2018 Oct; 6(37):5860-5866. PubMed ID: 32254707 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of Cu Nanoparticles on Polystyrene-Based Microspheres. Shi Y; Liu Q; Pan Q; Yang D; Lan Y; Wang T Langmuir; 2024 Jun; 40(25):13134-13143. PubMed ID: 38868999 [TBL] [Abstract][Full Text] [Related]
18. Microspherical poly(methyl methacrylate)/multiwalled carbon nanotube composites prepared via in situ dispersion polymerization. Kim HS; Myung SJ; Jung R; Jin HJ J Nanosci Nanotechnol; 2007 Nov; 7(11):4045-8. PubMed ID: 18047115 [TBL] [Abstract][Full Text] [Related]
19. Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences. Pramanik C; Gissinger JR; Kumar S; Heinz H ACS Nano; 2017 Dec; 11(12):12805-12816. PubMed ID: 29179536 [TBL] [Abstract][Full Text] [Related]
20. High-strength, blood-compatible, and high-capacity bilirubin adsorbent based on cellulose-assisted high-quality dispersion of carbon nanotubes. Qiao L; Li Y; Liu Y; Wang Y; Du K J Chromatogr A; 2020 Dec; 1634():461659. PubMed ID: 33166890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]