BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 21456573)

  • 1. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions.
    Akaighe N; Maccuspie RI; Navarro DA; Aga DS; Banerjee S; Sohn M; Sharma VK
    Environ Sci Technol; 2011 May; 45(9):3895-901. PubMed ID: 21456573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.
    Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S
    Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength.
    Akaighe N; Depner SW; Banerjee S; Sohn M
    Chemosphere; 2013 Jul; 92(4):406-12. PubMed ID: 23422173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage.
    Dasari TP; Hwang HM
    Sci Total Environ; 2010 Nov; 408(23):5817-23. PubMed ID: 20850168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates.
    Lukman AI; Gong B; Marjo CE; Roessner U; Harris AT
    J Colloid Interface Sci; 2011 Jan; 353(2):433-44. PubMed ID: 20974473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies.
    Adegboyega NF; Sharma VK; Siskova KM; Vecerova R; Kolar M; Zbořil R; Gardea-Torresdey JL
    Environ Sci Technol; 2014 Mar; 48(6):3228-35. PubMed ID: 24524189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications.
    Annadhasan M; SankarBabu VR; Naresh R; Umamaheswari K; Rajendiran N
    Colloids Surf B Biointerfaces; 2012 Aug; 96():14-21. PubMed ID: 22537720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pyrene on formation of natural silver nanoparticles via reduction of silver ions by humic acid under UV irradiation.
    Liu M; Gao X; Pan F; Deng Y; Xia D; Li Z; Fu J
    Chemosphere; 2020 May; 247():125937. PubMed ID: 31978665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species.
    He D; Garg S; Waite TD
    Langmuir; 2012 Jul; 28(27):10266-75. PubMed ID: 22616806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature.
    Singha D; Barman N; Sahu K
    J Colloid Interface Sci; 2014 Jan; 413():37-42. PubMed ID: 24183428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates.
    Huy GD; Zhang M; Zuo P; Ye BC
    Analyst; 2011 Aug; 136(16):3289-94. PubMed ID: 21743915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.
    El Badawy AM; Luxton TP; Silva RG; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2010 Feb; 44(4):1260-6. PubMed ID: 20099802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic role of iron in the formation of silver nanoparticles in photo-irradiated Ag
    Yin Y; Han D; Tai C; Tan Z; Zhou X; Yu S; Liu J; Jiang G
    Environ Pollut; 2017 Jun; 225():66-73. PubMed ID: 28351007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver release from silver nanoparticles in natural waters.
    Dobias J; Bernier-Latmani R
    Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study.
    Ho CM; Yau SK; Lok CN; So MH; Che CM
    Chem Asian J; 2010 Feb; 5(2):285-93. PubMed ID: 20063340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter.
    Akaighe N; Depner SW; Banerjee S; Sharma VK; Sohn M
    Sci Total Environ; 2012 Dec; 441():277-89. PubMed ID: 23164532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of Ag
    Nie X; Zhu K; Zhao S; Dai Y; Tian H; Sharma VK; Jia H
    Chemosphere; 2020 Mar; 243():125413. PubMed ID: 31765900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol.
    Zhang P; Shao C; Zhang Z; Zhang M; Mu J; Guo Z; Liu Y
    Nanoscale; 2011 Aug; 3(8):3357-63. PubMed ID: 21761072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiluminescence of luminol catalyzed by silver nanoparticles.
    Chen H; Gao F; He R; Cui D
    J Colloid Interface Sci; 2007 Nov; 315(1):158-63. PubMed ID: 17681516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers.
    Zhang H; Smith JA; Oyanedel-Craver V
    Water Res; 2012 Mar; 46(3):691-9. PubMed ID: 22169660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.