These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21456575)

  • 41. Influence of organic waste type and soil structure on the bacterial filtration rates in unsaturated intact soil columns.
    Mosaddeghi MR; Mahboubi AA; Zandsalimi S; Unc A
    J Environ Manage; 2009 Feb; 90(2):730-9. PubMed ID: 18353528
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaporation-induced patterns from droplets containing motile and nonmotile bacteria.
    Nellimoottil TT; Rao PN; Ghosh SS; Chattopadhyay A
    Langmuir; 2007 Aug; 23(17):8655-8. PubMed ID: 17628083
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Straining phenomena in bacteria transport through natural porous media.
    Díaz J; Rendueles M; Díaz M
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):400-9. PubMed ID: 19455361
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand.
    Foppen JW; Liem Y; Schijven J
    Water Res; 2008 Jan; 42(1-2):211-9. PubMed ID: 17825871
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacteria transport and deposition under unsaturated conditions: the role of the matrix grain size and the bacteria surface protein.
    Gargiulo G; Bradford S; Simůnek J; Ustohal P; Vereecken H; Klumpp E
    J Contam Hydrol; 2007 Jul; 92(3-4):255-73. PubMed ID: 17337313
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Equilibrium and kinetic adsorption of bacteria on alluvial sand and surface thermodynamic interpretation.
    Chen G; Rockhold M; Strevett KA
    Res Microbiol; 2003 Apr; 154(3):175-81. PubMed ID: 12706506
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A field study of nonequilibrium and facilitated transport of Cd in an alluvial gravel aquifer.
    Pang L; Close M
    Ground Water; 1999; 37(5):785-92. PubMed ID: 19125932
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of biofilms on the movement of colloids in porous media. Implications for colloid facilitated transport in subsurface environments.
    Leon Morales CF; Strathmann M; Flemming HC
    Water Res; 2007 May; 41(10):2059-68. PubMed ID: 17416399
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacteria transport through goethite-coated sand: effects of solution pH and coated sand content.
    Kim SB; Park SJ; Lee CG; Choi NC; Kim DJ
    Colloids Surf B Biointerfaces; 2008 Jun; 63(2):236-42. PubMed ID: 18226508
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling transport of Escherichia coli in a creek during and after artificial high-flow events: three-year study and analysis.
    Yakirevich A; Pachepsky YA; Guber AK; Gish TJ; Shelton DR; Cho KH
    Water Res; 2013 May; 47(8):2676-88. PubMed ID: 23521976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modelling E. coli transport in soil columns: simulation of wastewater reuse in agriculture.
    Smith E; Badawy A
    Water Sci Technol; 2008; 57(7):1123-9. PubMed ID: 18441442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.
    Pellegrino J; Wright S; Ranvill J; Amy G
    Water Sci Technol; 2005; 51(6-7):85-92. PubMed ID: 16003965
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distance and flow effects on microsphere transport in a large gravel column.
    Close ME; Pang L; Flintoft MJ; Sinton LW
    J Environ Qual; 2006; 35(4):1204-12. PubMed ID: 16825440
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm.
    Strobel KL; McGowan S; Bauer RD; Griebler C; Liu J; Ford RM
    Biotechnol Bioeng; 2011 Sep; 108(9):2070-7. PubMed ID: 21495010
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling.
    He F; Zhang M; Qian T; Zhao D
    J Colloid Interface Sci; 2009 Jun; 334(1):96-102. PubMed ID: 19383562
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Determination of bromacil transport as a function of water and carbon content in soils.
    Kim SB; On HS; Kim DJ; Jury WA; Wang Z
    J Environ Sci Health B; 2007; 42(5):529-37. PubMed ID: 17562461
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity.
    Wang M; Ford RM
    Environ Sci Technol; 2009 Aug; 43(15):5921-7. PubMed ID: 19731698
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of dissolved organic matter on bacterial tactic motility, attachment, and transport.
    Jimenez-Sanchez C; Wick LY; Cantos M; Ortega-Calvo JJ
    Environ Sci Technol; 2015 Apr; 49(7):4498-505. PubMed ID: 25734420
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling Escherichia coli and Rhodococcus erythropolis transport through wettable and water repellent porous media.
    Sepehrnia N; Bachmann J; Hajabbasi MA; Afyuni M; Horn MA
    Colloids Surf B Biointerfaces; 2018 Dec; 172():280-287. PubMed ID: 30173095
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of microbial movement in subsurface materials.
    Reynolds PJ; Sharma P; Jenneman GE; McInerney MJ
    Appl Environ Microbiol; 1989 Sep; 55(9):2280-6. PubMed ID: 2552920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.