These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21456586)

  • 1. Mononuclear Fe(II) single-molecule magnets: a theoretical approach.
    Cremades E; Ruiz E
    Inorg Chem; 2011 May; 50(9):4016-20. PubMed ID: 21456586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes.
    Atanasov M; Ganyushin D; Pantazis DA; Sivalingam K; Neese F
    Inorg Chem; 2011 Aug; 50(16):7460-77. PubMed ID: 21744845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to build molecules with large magnetic anisotropy.
    Cirera J; Ruiz E; Alvarez S; Neese F; Kortus J
    Chemistry; 2009; 15(16):4078-87. PubMed ID: 19248077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the control of the magnetic anisotropy of Fe(II) cubes: a DFT study.
    Ribas-Arino J; Baruah T; Pederson MR
    J Am Chem Soc; 2006 Jul; 128(29):9497-505. PubMed ID: 16848487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches.
    Duboc C; Ganyushin D; Sivalingam K; Collomb MN; Neese F
    J Phys Chem A; 2010 Oct; 114(39):10750-8. PubMed ID: 20828179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic anisotropy of mononuclear Ni(II) complexes: on the importance of structural diversity and the structural distortions.
    Singh SK; Gupta T; Badkur P; Rajaraman G
    Chemistry; 2014 Aug; 20(33):10305-13. PubMed ID: 25042299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shedding light on the single-molecule magnet behavior of mononuclear Dy(III) complexes.
    Aravena D; Ruiz E
    Inorg Chem; 2013 Dec; 52(23):13770-8. PubMed ID: 24237385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined ligand field and density functional theory analysis of the magnetic anisotropy in oligonuclear complexes based on Fe(III)-CN-M(II) exchange-coupled pairs.
    Atanasov M; Comba P; Daul CA
    Inorg Chem; 2008 Apr; 47(7):2449-63. PubMed ID: 18302331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of single-molecule magnets: a supramolecular approach.
    Glaser T
    Chem Commun (Camb); 2011 Jan; 47(1):116-30. PubMed ID: 20862425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule magnets of ferrous cubes: structurally controlled magnetic anisotropy.
    Oshio H; Hoshino N; Ito T; Nakano M
    J Am Chem Soc; 2004 Jul; 126(28):8805-12. PubMed ID: 15250734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical methods enlighten magnetic properties of a family of Mn(6) single-molecule magnets.
    Cremades E; Cano J; Ruiz E; Rajaraman G; Milios CJ; Brechin EK
    Inorg Chem; 2009 Aug; 48(16):8012-9. PubMed ID: 19624160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design and assembly of a new series of cyanide-bridged Fe(III)-Mn(II) one-dimensional single chain complexes: synthesis, crystal structures, and magnetic properties.
    Zhang D; Wang H; Chen Y; Ni ZH; Tian L; Jiang J
    Inorg Chem; 2009 Jun; 48(12):5488-96. PubMed ID: 19441825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Key role of higher order symmetry and electrostatic ligand field design in the magnetic relaxation of low-coordinate Er(iii) complexes.
    Singh SK; Pandey B; Velmurugan G; Rajaraman G
    Dalton Trans; 2017 Sep; 46(35):11913-11924. PubMed ID: 28849807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large magnetic anisotropy in pentacoordinate Ni(II) complexes.
    Rebilly JN; Charron G; Rivière E; Guillot R; Barra AL; Serrano MD; van Slageren J; Mallah T
    Chemistry; 2008; 14(4):1169-77. PubMed ID: 18000920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, magnetism, and theoretical study of a mixed-valence Co(II)3Co(III)4 heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy.
    Chibotaru LF; Ungur L; Aronica C; Elmoll H; Pilet G; Luneau D
    J Am Chem Soc; 2008 Sep; 130(37):12445-55. PubMed ID: 18717564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exchange interactions and zero-field splittings in C3-symmetric Mn(III)6Fe(III): using molecular recognition for the construction of a series of high spin complexes based on the triplesalen ligand.
    Glaser T; Heidemeier M; Krickemeyer E; Bögge H; Stammler A; Fröhlich R; Bill E; Schnack J
    Inorg Chem; 2009 Jan; 48(2):607-20. PubMed ID: 19072685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrocycle-based spin-crossover materials.
    El Hajj F; Sebki G; Patinec V; Marchivie M; Triki S; Handel H; Yefsah S; Tripier R; Gómez-García CJ; Coronado E
    Inorg Chem; 2009 Nov; 48(21):10416-23. PubMed ID: 19780566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures and magnetic properties of 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz)-containing copper(II) complexes.
    Carranza J; Brennan C; Sletten J; Clemente-Juan JM; Lloret F; Julve M
    Inorg Chem; 2003 Dec; 42(26):8716-27. PubMed ID: 14686849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.