These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
540 related articles for article (PubMed ID: 21456598)
1. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap. Qi JS; Huang JY; Feng J; Shi da N; Li J ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598 [TBL] [Abstract][Full Text] [Related]
2. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes. Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103 [TBL] [Abstract][Full Text] [Related]
3. Thermionic field emission transport in carbon nanotube transistors. Perello DJ; Lim SC; Chae SJ; Lee I; Kim MJ; Lee YH; Yun M ACS Nano; 2011 Mar; 5(3):1756-60. PubMed ID: 21309557 [TBL] [Abstract][Full Text] [Related]
5. Graphene/silicon nanowire Schottky junction for enhanced light harvesting. Fan G; Zhu H; Wang K; Wei J; Li X; Shu Q; Guo N; Wu D ACS Appl Mater Interfaces; 2011 Mar; 3(3):721-5. PubMed ID: 21323376 [TBL] [Abstract][Full Text] [Related]
6. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors. Lee SY; Lee SW; Kim SM; Yu WJ; Jo YW; Lee YH ACS Nano; 2011 Mar; 5(3):2369-75. PubMed ID: 21370895 [TBL] [Abstract][Full Text] [Related]
7. Anomalous Schottky barriers and contact band-to-band tunneling in carbon nanotube transistors. Perello DJ; Chulim S; Chae SJ; Lee I; Kim MJ; Lee YH; Yun M ACS Nano; 2010 Jun; 4(6):3103-8. PubMed ID: 20509663 [TBL] [Abstract][Full Text] [Related]
8. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials. Zhang L; Zhang H; Zhou R; Chen Z; Li Q; Fan S; Ge G; Liu R; Jiang K Nanotechnology; 2011 Sep; 22(38):385704. PubMed ID: 21878720 [TBL] [Abstract][Full Text] [Related]
9. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. Kumar B; Lee KY; Park HK; Chae SJ; Lee YH; Kim SW ACS Nano; 2011 May; 5(5):4197-204. PubMed ID: 21495657 [TBL] [Abstract][Full Text] [Related]
11. Membraneless enzymatic biofuel cells based on graphene nanosheets. Liu C; Alwarappan S; Chen Z; Kong X; Li CZ Biosens Bioelectron; 2010 Mar; 25(7):1829-33. PubMed ID: 20056403 [TBL] [Abstract][Full Text] [Related]
12. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427 [TBL] [Abstract][Full Text] [Related]
13. Electronic structure and transport of a carbon chain between graphene nanoribbon leads. Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839 [TBL] [Abstract][Full Text] [Related]
14. Transport properties of T-shaped and crossed junctions based on graphene nanoribbons. OuYang F; Xiao J; Guo R; Zhang H; Xu H Nanotechnology; 2009 Feb; 20(5):055202. PubMed ID: 19417339 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. Ganzhorn M; Vijayaraghavan A; Dehm S; Hennrich F; Green AA; Fichtner M; Voigt A; Rapp M; von Löhneysen H; Hersam MC; Kappes MM; Krupke R ACS Nano; 2011 Mar; 5(3):1670-6. PubMed ID: 21341751 [TBL] [Abstract][Full Text] [Related]
19. Electron transport in very clean, as-grown suspended carbon nanotubes. Cao J; Wang Q; Dai H Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240 [TBL] [Abstract][Full Text] [Related]
20. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. Wang C; Badmaev A; Jooyaie A; Bao M; Wang KL; Galatsis K; Zhou C ACS Nano; 2011 May; 5(5):4169-76. PubMed ID: 21517104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]