These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21456640)

  • 1. An improved dynamic Monte Carlo model coupled with Poisson equation to simulate the performance of organic photovoltaic devices.
    Meng L; Wang D; Li Q; Yi Y; Brédas JL; Shuai Z
    J Chem Phys; 2011 Mar; 134(12):124102. PubMed ID: 21456640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics.
    Meng L; Shang Y; Li Q; Li Y; Zhan X; Shuai Z; Kimber RG; Walker AB
    J Phys Chem B; 2010 Jan; 114(1):36-41. PubMed ID: 20000370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling charge transport in organic photovoltaic materials.
    Nelson J; Kwiatkowski JJ; Kirkpatrick J; Frost JM
    Acc Chem Res; 2009 Nov; 42(11):1768-78. PubMed ID: 19848409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices.
    Groves C; Marsh RA; Greenham NC
    J Chem Phys; 2008 Sep; 129(11):114903. PubMed ID: 19044985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge mobility and recombination in a new hole transporting polymer and its photovoltaic blend.
    Tan MJ; Goh WP; Li J; Pundir G; Chellappan V; Chen ZK
    ACS Appl Mater Interfaces; 2010 May; 2(5):1414-20. PubMed ID: 20415440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge recombination in organic photovoltaic devices with high open-circuit voltages.
    Westenhoff S; Howard IA; Hodgkiss JM; Kirov KR; Bronstein HA; Williams CK; Greenham NC; Friend RH
    J Am Chem Soc; 2008 Oct; 130(41):13653-8. PubMed ID: 18798623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: the treatment of electrostatic interactions.
    Casalegno M; Raos G; Po R
    J Chem Phys; 2010 Mar; 132(9):094705. PubMed ID: 20210409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of charge transport and recombination on the performance of dye-sensitized solar cells.
    Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroluminescence from charge transfer states in polymer solar cells.
    Tvingstedt K; Vandewal K; Gadisa A; Zhang F; Manca J; Inganäs O
    J Am Chem Soc; 2009 Aug; 131(33):11819-24. PubMed ID: 19722595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of exciton photodissociation, charge transport and photovoltaic response of poly(N-vinyl carbazole):TiO(2) nanocomposites for solar cell applications.
    Dridi C; Barlier V; Chaabane H; Davenas J; Ben Ouada H
    Nanotechnology; 2008 Sep; 19(37):375201. PubMed ID: 21832543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simplified charge separation energetics in a two-dimensional model for polymer-based photovoltaic cells.
    Sylvester-Hvid KO; Ratner MA
    J Phys Chem B; 2005 Jan; 109(1):200-8. PubMed ID: 16851005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells.
    Barnes PR; Anderson AY; Juozapavicius M; Liu L; Li X; Palomares E; Forneli A; O'Regan BC
    Phys Chem Chem Phys; 2011 Feb; 13(8):3547-58. PubMed ID: 21173970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternating polyfluorenes collect solar light in polymer photovoltaics.
    Inganäs O; Zhang F; Andersson MR
    Acc Chem Res; 2009 Nov; 42(11):1731-9. PubMed ID: 19835413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the improved stability of hybrid polymer solar cells fabricated with copper electrodes.
    Reeja-Jayan B; Manthiram A
    ACS Appl Mater Interfaces; 2011 May; 3(5):1492-501. PubMed ID: 21449611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop.
    Kim BG; Jeong EJ; Park HJ; Bilby D; Guo LJ; Kim J
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):674-80. PubMed ID: 21323360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells.
    Lin YY; Chu TH; Li SS; Chuang CH; Chang CH; Su WF; Chang CP; Chu MW; Chen CW
    J Am Chem Soc; 2009 Mar; 131(10):3644-9. PubMed ID: 19215126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible polyelectrolyte simulations at the Poisson-Boltzmann level: a comparison of the kink-jump and multigrid configurational-bias Monte Carlo methods.
    Tsonchev S; Coalson RD; Liu A; Beck TL
    J Chem Phys; 2004 May; 120(20):9817-21. PubMed ID: 15267998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties.
    Liang Y; Feng D; Wu Y; Tsai ST; Li G; Ray C; Yu L
    J Am Chem Soc; 2009 Jun; 131(22):7792-9. PubMed ID: 19453105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.