These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21456688)

  • 1. Simulation of homogeneous condensation of small polyatomic systems in high pressure supersonic nozzle flows using Bhatnagar-Gross-Krook model.
    Kumar R; Levin DA
    J Chem Phys; 2011 Mar; 134(12):124519. PubMed ID: 21456688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics studies to understand the mechanism of heat accommodation in homogeneous condensing flow of carbon dioxide.
    Kumar R; Li Z; van Duin A; Levin D
    J Chem Phys; 2011 Aug; 135(6):064503. PubMed ID: 21842939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-scale study of condensation in water jets using ellipsoidal-statistical Bhatnagar-Gross-Krook and molecular dynamics modeling.
    Li Z; Borner A; Levin DA
    J Chem Phys; 2014 Jun; 140(22):224501. PubMed ID: 24929401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CH(3)CH(2)OD/D(2)O binary condensation in a supersonic Laval nozzle: Presence of small clusters inferred from a macroscopic energy balance.
    Tanimura S; Wyslouzil BE; Wilemski G
    J Chem Phys; 2010 Apr; 132(14):144301. PubMed ID: 20405990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lagrangian-Eulerian approach to modeling homogeneous condensation in high density gas expansions.
    Jansen R; Gimelshein N; Gimelshein S; Wysong I
    J Chem Phys; 2011 Mar; 134(10):104105. PubMed ID: 21405154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit.
    Shi Y; Zhao TS; Guo ZL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066310. PubMed ID: 15697505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary nucleation rates for ethanol/water mixtures in supersonic Laval nozzles.
    Tanimura S; Dieregsweiler UM; Wyslouzil BE
    J Chem Phys; 2010 Nov; 133(17):174305. PubMed ID: 21054030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rayleigh-Bénard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme in the incompressible limit.
    Xu K; Lui SH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):464-70. PubMed ID: 11969784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possibility of constructing a multispeed Bhatnagar-Gross-Krook thermal model of the lattice Boltzmann method.
    Watari M; Tsutahara M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016703. PubMed ID: 15324200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the lattice Boltzmann Bhatnagar-Gross-Krook no-slip boundary condition: ways to improve accuracy and stability.
    Verschaeve JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036703. PubMed ID: 19905242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic nucleation model for free expanding water condensation plume simulations.
    Li Z; Zhong J; Levin DA; Garrison BJ
    J Chem Phys; 2009 May; 130(17):174309. PubMed ID: 19425778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice Boltzmann simulation of dense gas flows in microchannels.
    Shi Y; Zhao TS; Guo Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016707. PubMed ID: 17677594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cryogenic supersonic nozzle apparatus to study homogeneous nucleation of Ar and other simple molecules.
    Sinha S; Laksmono H; Wyslouzil BE
    Rev Sci Instrum; 2008 Nov; 79(11):114101. PubMed ID: 19045901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method.
    Krüger T; Varnik F; Raabe D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):025701. PubMed ID: 20866869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilized lattice Boltzmann-Enskog method for compressible flows and its application to one- and two-component fluids in nanochannels.
    Melchionna S; Marini Bettolo Marconi U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036707. PubMed ID: 22587209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using small angle x-ray scattering to measure the homogeneous nucleation rates of n-propanol, n-butanol, and n-pentanol in supersonic nozzle expansions.
    Ghosh D; Manka A; Strey R; Seifert S; Winans RE; Wyslouzil BE
    J Chem Phys; 2008 Sep; 129(12):124302. PubMed ID: 19045018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook hydrodynamics of quantum gases.
    Yang JY; Hung LH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056708. PubMed ID: 19518594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple-relaxation-time lattice Boltzmann scheme for homogeneous mixture flows with external force.
    Asinari P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056706. PubMed ID: 18643194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a molecular-dynamics-based cluster-heat-capacity model for study of homogeneous condensation in supersonic water-vapor expansions.
    Borner A; Li Z; Levin DA
    J Chem Phys; 2013 Feb; 138(6):064302. PubMed ID: 23425466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Velocity distribution function of a dilute gas under uniform shear flow: Comparison between a Monte Carlo simulation method and the Bhatnagar-Gross-Krook equation.
    Gómez Ordóñez J ; Brey JJ; Santos A
    Phys Rev A; 1990 Jan; 41(2):810-815. PubMed ID: 9903163
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.