These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap. Ritter CM; Mas J; Oddershede L; Berg-Sørensen K Methods Mol Biol; 2017; 1486():513-536. PubMed ID: 27844442 [TBL] [Abstract][Full Text] [Related]
45. Trapping-assisted sensing of particles and proteins using on-chip optical microcavities. Lin S; Crozier KB ACS Nano; 2013 Feb; 7(2):1725-30. PubMed ID: 23311448 [TBL] [Abstract][Full Text] [Related]
46. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers. Farré A; van der Horst A; Blab GA; Downing BP; Forde NR J Biophotonics; 2010 Apr; 3(4):224-33. PubMed ID: 20151444 [TBL] [Abstract][Full Text] [Related]
47. Combined macro- and microrheometer for use with Langmuir monolayers. Walder R; Schmidt CF; Dennin M Rev Sci Instrum; 2008 Jun; 79(6):063905. PubMed ID: 18601415 [TBL] [Abstract][Full Text] [Related]
49. Pulsed laser manipulation of an optically trapped bead: averaging thermal noise and measuring the pulsed force amplitude. Lindballe TB; Kristensen MV; Berg-Sørensen K; Keiding SR; Stapelfeldt H Opt Express; 2013 Jan; 21(2):1986-96. PubMed ID: 23389179 [TBL] [Abstract][Full Text] [Related]
50. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Schäffer E; Nørrelykke SF; Howard J Langmuir; 2007 Mar; 23(7):3654-65. PubMed ID: 17326669 [TBL] [Abstract][Full Text] [Related]
51. Optical mirror trap with a large field of view. Pitzek M; Steiger R; Thalhammer G; Bernet S; Ritsch-Marte M Opt Express; 2009 Oct; 17(22):19414-23. PubMed ID: 19997161 [TBL] [Abstract][Full Text] [Related]
52. 2D modeling and preliminary in vitro investigation of a prototype high gradient magnetic separator for biomedical applications. Chen H; Kaminski MD; Rosengart AJ Med Eng Phys; 2008 Jan; 30(1):1-8. PubMed ID: 17400018 [TBL] [Abstract][Full Text] [Related]
54. Single-shot phase-sensitive wideband active microrheology of viscoelastic fluids using pulse-scanned optical tweezers. Paul S; Kundu A; Banerjee A J Phys Condens Matter; 2019 Dec; 31(50):504001. PubMed ID: 31315094 [TBL] [Abstract][Full Text] [Related]
55. Magnetic separation of micro-spheres from viscous biological fluids. Chen H; Kaminski MD; Caviness PL; Liu X; Dhar P; Torno M; Rosengart AJ Phys Med Biol; 2007 Feb; 52(4):1185-96. PubMed ID: 17264379 [TBL] [Abstract][Full Text] [Related]
56. Enhancing Raman tweezers by phase-sensitive detection. Rusciano G; De Luca AC; Sasso A; Pesce G Anal Chem; 2007 May; 79(10):3708-15. PubMed ID: 17444615 [TBL] [Abstract][Full Text] [Related]
57. Probing the dynamics of an optically trapped particle by phase sensitive back focal plane interferometry. Roy B; Pal SB; Haldar A; Gupta RK; Ghosh N; Banerjee A Opt Express; 2012 Apr; 20(8):8317-28. PubMed ID: 22513543 [TBL] [Abstract][Full Text] [Related]
58. Active particle control through silicon using conventional optical trapping techniques. Appleyard DC; Lang MJ Lab Chip; 2007 Dec; 7(12):1837-40. PubMed ID: 18030409 [TBL] [Abstract][Full Text] [Related]
59. Combined passive and active microrheology study of protein-layer formation at an air-water interface. Lee MH; Reich DH; Stebe KJ; Leheny RL Langmuir; 2010 Feb; 26(4):2650-8. PubMed ID: 19919016 [TBL] [Abstract][Full Text] [Related]