These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21456771)

  • 1. A dual analyzer for real-time impedance and noise spectroscopy of nanoscale devices.
    Joo MK; Kang P; Kim Y; Kim GT; Kim S
    Rev Sci Instrum; 2011 Mar; 82(3):034702. PubMed ID: 21456771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DC modeling and the source of flicker noise in passivated carbon nanotube transistors.
    Kim S; Kim S; Janes DB; Mohammadi S; Back J; Shim M
    Nanotechnology; 2010 Sep; 21(38):385203. PubMed ID: 20798468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultralow noise preamplifier for low frequency noise measurements.
    Cannatà G; Scandurra G; Ciofi C
    Rev Sci Instrum; 2009 Nov; 80(11):114702. PubMed ID: 19947746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attofarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems.
    Carminati M; Ferrari G; Sampietro M
    Rev Sci Instrum; 2009 Dec; 80(12):124701. PubMed ID: 20059158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube.
    Zhong Z; Gabor NM; Sharping JE; Gaeta AL; McEuen PL
    Nat Nanotechnol; 2008 Apr; 3(4):201-5. PubMed ID: 18654503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous Schottky barriers and contact band-to-band tunneling in carbon nanotube transistors.
    Perello DJ; Chulim S; Chae SJ; Lee I; Kim MJ; Lee YH; Yun M
    ACS Nano; 2010 Jun; 4(6):3103-8. PubMed ID: 20509663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube thin film transistors based on aerosol methods.
    Zavodchikova MY; Kulmala T; Nasibulin AG; Ermolov V; Franssila S; Grigoras K; Kauppinen EI
    Nanotechnology; 2009 Feb; 20(8):085201. PubMed ID: 19417441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells.
    Susloparova A; Koppenhöfer D; Vu XT; Weil M; Ingebrandt S
    Biosens Bioelectron; 2013 Feb; 40(1):50-6. PubMed ID: 22795530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy.
    Pliquett U; Schönfeldt M; Barthel A; Frense D; Nacke T; Beckmann D
    Physiol Meas; 2011 Jul; 32(7):927-44. PubMed ID: 21646715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative differential resistance in carbon nanotube field-effect transistors with patterned gate oxide.
    Rinkiö M; Johansson A; Kotimäki V; Törmä P
    ACS Nano; 2010 Jun; 4(6):3356-62. PubMed ID: 20524681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device.
    Wang MH; Kao MF; Jang LS
    Rev Sci Instrum; 2011 Jun; 82(6):064302. PubMed ID: 21721710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field-effect characteristics and screening in double-walled carbon nanotube field-effect transistors.
    Wang S; Liang XL; Chen Q; Zhang ZY; Peng LM
    J Phys Chem B; 2005 Sep; 109(37):17361-5. PubMed ID: 16853219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dispersion conditions of single-walled carbon nanotubes on the electrical characteristics of thin film network transistors.
    Barman SN; LeMieux MC; Baek J; Rivera R; Bao Z
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2672-8. PubMed ID: 20738099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors.
    Zhou Z; Eres G; Jin R; Subedi A; Mandrus D; Kim EH
    Nanotechnology; 2009 Feb; 20(8):085709. PubMed ID: 19417470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary symmetry nanowire logic circuits: experimental demonstrations and in silico optimizations.
    Sheriff BA; Wang D; Heath JR; Kurtin JN
    ACS Nano; 2008 Sep; 2(9):1789-98. PubMed ID: 19206417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Battery-powered portable instrument system for single-cell trapping, impedance measurements, and modeling analyses.
    Tsai SL; Chiang Y; Wang MH; Chen MK; Jang LS
    Electrophoresis; 2014 Aug; 35(16):2392-400. PubMed ID: 24610717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-walled carbon-nanotube spectroscopic and electronic field-effect transistor measurements: a combined approach.
    Kauffman DR; Star A
    Small; 2007 Aug; 3(8):1324-9. PubMed ID: 17603820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband spectroscopy of dynamic impedances with short chirp pulses.
    Min M; Land R; Paavle T; Parve T; Annus P; Trebbels D
    Physiol Meas; 2011 Jul; 32(7):945-58. PubMed ID: 21646703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates.
    Javey A; Kim H; Brink M; Wang Q; Ural A; Guo J; McIntyre P; McEuen P; Lundstrom M; Dai H
    Nat Mater; 2002 Dec; 1(4):241-6. PubMed ID: 12618786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.
    Hall AR; Falvo MR; Superfine R; Washburn S
    Nat Nanotechnol; 2007 Jul; 2(7):413-6. PubMed ID: 18654324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.