These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21456792)

  • 1. A technique for combined dynamic compression-shear test.
    Zhao PD; Lu FY; Chen R; Lin YL; Li JL; Lu L; Sun GL
    Rev Sci Instrum; 2011 Mar; 82(3):035110. PubMed ID: 21456792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading.
    Trexler MM; Lennon AM; Wickwire AC; Harrigan TP; Luong QT; Graham JL; Maisano AJ; Roberts JC; Merkle AC
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1920-8. PubMed ID: 22098890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A technique for measuring dynamic friction coefficient under impact loading.
    Lin YL; Qin JG; Chen R; Zhao PD; Lu FY
    Rev Sci Instrum; 2014 Sep; 85(9):094501. PubMed ID: 25273746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental technique of split Hopkinson pressure bar using fiber micro-displacement interferometer system for any reflector.
    Fu H; Tang XR; Li JL; Tan DW
    Rev Sci Instrum; 2014 Apr; 85(4):045120. PubMed ID: 24784672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a True-Biaxial Split Hopkinson Pressure Bar Device and Its Application.
    Pang S; Tao W; Liang Y; Huan S; Liu Y; Chen J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids.
    Dai F; Xia K; Luo SN
    Rev Sci Instrum; 2008 Dec; 79(12):123903. PubMed ID: 19123575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures.
    Bendarma A; Jankowiak T; Rusinek A; Lodygowski T; Jia B; Miguélez MH; Klosak M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferometry-based Kolsky bar apparatus.
    Avinadav C; Ashuach Y; Kreif R
    Rev Sci Instrum; 2011 Jul; 82(7):073908. PubMed ID: 21806200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples.
    Nakagawa S
    Rev Sci Instrum; 2011 Apr; 82(4):044901. PubMed ID: 21529029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic and quasi-static compressive response of porcine muscle.
    Song B; Chen W; Ge Y; Weerasooriya T
    J Biomech; 2007; 40(13):2999-3005. PubMed ID: 17448479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of dynamic effects in a two-bar/three-point bend fracture test.
    Jiang F; Vecchio KS
    Rev Sci Instrum; 2007 Jun; 78(6):063903. PubMed ID: 17614622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High strain rate response of rabbit femur bones.
    Shunmugasamy VC; Gupta N; Coelho PG
    J Biomech; 2010 Nov; 43(15):3044-50. PubMed ID: 20673668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constant strain rate compression of bovine cortical bone on the Split-Hopkinson Pressure Bar.
    Bekker A; Cloete TJ; Chinsamy-Turan A; Nurick GN; Kok S
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():443-9. PubMed ID: 25492009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads.
    Little JP; Pearcy MJ; Tevelen G; Evans JH; Pettet G; Adam CJ
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):146-57. PubMed ID: 20129414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled experiment/finite element analysis on the mechanical response of porcine brain under high strain rates.
    Prabhu R; Horstemeyer MF; Tucker MT; Marin EB; Bouvard JL; Sherburn JA; Liao J; Williams LN
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1067-80. PubMed ID: 21783116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled multipulse loading with a stuffed striker in classical split Hopkinson pressure bar testing.
    Xia K; Chen R; Huang S; Luo SN
    Rev Sci Instrum; 2008 May; 79(5):053906. PubMed ID: 18513078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic compressive response of bovine liver tissues.
    Pervin F; Chen WW; Weerasooriya T
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):76-84. PubMed ID: 21094481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials.
    Prabhu R; Whittington WR; Patnaik SS; Mao Y; Begonia MT; Williams LN; Liao J; Horstemeyer MF
    J Vis Exp; 2015 May; (99):e51545. PubMed ID: 26067742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ damage assessment using synchrotron X-rays in materials loaded by a Hopkinson bar.
    Chen WW; Hudspeth MC; Claus B; Parab ND; Black JT; Fezzaa K; Luo SN
    Philos Trans A Math Phys Eng Sci; 2014 May; 372(2015):20130191. PubMed ID: 24711489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical investigations on the use of polymer Hopkinson pressure bars.
    Harrigan JJ; Ahonsi B; Palamidi E; Reid SR
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130201. PubMed ID: 25071237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.