These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21456838)

  • 1. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.
    Gotoda H; Nikimoto H; Miyano T; Tachibana S
    Chaos; 2011 Mar; 21(1):013124. PubMed ID: 21456838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor.
    Gotoda H; Amano M; Miyano T; Ikawa T; Maki K; Tachibana S
    Chaos; 2012 Dec; 22(4):043128. PubMed ID: 23278063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of degeneration process in combustion instability based on dynamical systems theory.
    Gotoda H; Okuno Y; Hayashi K; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052906. PubMed ID: 26651761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Idealized gas turbine combustor for performance research and validation of large eddy simulations.
    Williams TC; Schefer RW; Oefelein JC; Shaddix CR
    Rev Sci Instrum; 2007 Mar; 78(3):035114. PubMed ID: 17411224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and control of combustion instability based on the concept of dynamical system theory.
    Gotoda H; Shinoda Y; Kobayashi M; Okuno Y; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022910. PubMed ID: 25353548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Route to chaos for combustion instability in ducted laminar premixed flames.
    Kabiraj L; Saurabh A; Wahi P; Sujith RI
    Chaos; 2012 Jun; 22(2):023129. PubMed ID: 22757536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic properties of unstable motion of swirling premixed flames generated by a change in gravitational orientation.
    Gotoda H; Miyano T; Shepherd IG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026211. PubMed ID: 20365642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaos in an imperfectly premixed model combustor.
    Kabiraj L; Saurabh A; Karimi N; Sailor A; Mastorakos E; Dowling AP; Paschereit CO
    Chaos; 2015 Feb; 25(2):023101. PubMed ID: 25725637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaos in thermal pulse combustion.
    Daw CS; Thomas JF; Richards GA; Narayanaswami LL
    Chaos; 1995 Dec; 5(4):662-670. PubMed ID: 12780223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor.
    De S; Bhattacharya A; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2020 Apr; 30(4):043115. PubMed ID: 32357653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Acoustic Excitation on the Combustion Instability of Hydrogen-Methane Lean Premixed Swirling Flames.
    Deng K; Zhong Y; Wang M; Zhong Y; Luo KH
    ACS Omega; 2020 Apr; 5(15):8744-8753. PubMed ID: 32337436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor.
    Sampath R; Mathur M; Chakravarthy SR
    Phys Rev E; 2016 Dec; 94(6-1):062209. PubMed ID: 28085437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental data regarding the effects of urea addition into liquid fuel to combustion enhancement of a low NO
    De Giorgi MG; Ciccarella G; Fontanarosa D; Pescini E; Ficarella A
    Data Brief; 2021 Feb; 34():106702. PubMed ID: 33437856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial correlation in the ambient core noise field of a turbofan engine.
    Miles JH
    J Acoust Soc Am; 2012 Jun; 131(6):4625-39. PubMed ID: 22712936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering.
    Kampmann S; Leipertz A; Döbbeling K; Haumann J; Sattelmayer T
    Appl Opt; 1993 Oct; 32(30):6167-72. PubMed ID: 20856446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting NOx Distribution in a Micro Rich-Quench-Lean Combustor Using a Variational Autoencoder.
    Yan P; Fan W; Zhang R
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of self-excited thermoacoustic instability in a combustion system: Pseudo-periodic and high-dimensional nature.
    Okuno Y; Small M; Gotoda H
    Chaos; 2015 Apr; 25(4):043107. PubMed ID: 25933655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Partial Premixing and Heat Loss on the Reacting Flow Field Prediction of a Swirl Stabilized Gas Turbine Model Combustor.
    Gövert S; Mira D; Kok JBW; Vázquez M; Houzeaux G
    Flow Turbul Combust; 2018; 100(2):503-534. PubMed ID: 30069142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emission Modeling of an Interturbine Burner Based on Flameless Combustion.
    Perpignan AAV; Talboom MG; Levy Y; Rao AG
    Energy Fuels; 2018 Jan; 32(1):822-838. PubMed ID: 29910533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.