These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21456860)

  • 21. Antioxidant status and susceptibility of sickle erythrocytes to oxidative and osmotic stress.
    Tatum VL; Chow CK
    Free Radic Res; 1996 Aug; 25(2):133-9. PubMed ID: 8885331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sickle cell trait human erythrocytes are significantly stiffer than normal.
    Maciaszek JL; Lykotrafitis G
    J Biomech; 2011 Feb; 44(4):657-61. PubMed ID: 21111421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Band 3 and glycophorin are progressively aggregated in density-fractionated sickle and normal red blood cells. Evidence from rotational and lateral mobility studies.
    Corbett JD; Golan DE
    J Clin Invest; 1993 Jan; 91(1):208-17. PubMed ID: 8423219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating deep learning with microfluidics for biophysical classification of sickle red blood cells adhered to laminin.
    Praljak N; Iram S; Goreke U; Singh G; Hill A; Gurkan UA; Hinczewski M
    PLoS Comput Biol; 2021 Nov; 17(11):e1008946. PubMed ID: 34843453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patient-specific modeling of individual sickle cell behavior under transient hypoxia.
    Li X; Du E; Dao M; Suresh S; Karniadakis GE
    PLoS Comput Biol; 2017 Mar; 13(3):e1005426. PubMed ID: 28288152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abnormal permeability pathways in human red blood cells.
    Ellory JC; Robinson HC; Browning JA; Stewart GW; Gehl KA; Gibson JS
    Blood Cells Mol Dis; 2007; 39(1):1-6. PubMed ID: 17434766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiologic and rheologic effects of the antisickling agent ethacrynic acid and its N-butylated derivative on normal and sickle erythrocytes.
    Orringer EP; Blythe DS; Whitney JA; Brockenbrough S; Abraham DJ
    Am J Hematol; 1992 Jan; 39(1):39-44. PubMed ID: 1536139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron in sickle cell disease: a review why less is better.
    Koduri PR
    Am J Hematol; 2003 May; 73(1):59-63. PubMed ID: 12701123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of irreversibly sickled cells in reducing the osmotic fragility of red cells in sickle cell anemia.
    Figueiredo MS; Zago MA
    Acta Physiol Pharmacol Latinoam; 1985; 35(1):49-56. PubMed ID: 2932889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration.
    Evans E; Mohandas N; Leung A
    J Clin Invest; 1984 Feb; 73(2):477-88. PubMed ID: 6699172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impaired vasodilation by red blood cells in sickle cell disease.
    Pawloski JR; Hess DT; Stamler JS
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2531-6. PubMed ID: 15699345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adherent leukocytes capture sickle erythrocytes in an in vitro flow model of vaso-occlusion.
    Finnegan EM; Turhan A; Golan DE; Barabino GA
    Am J Hematol; 2007 Apr; 82(4):266-75. PubMed ID: 17094094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sickle cell anemia as a rheologic disease.
    Horne MK
    Am J Med; 1981 Feb; 70(2):288-98. PubMed ID: 7008586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical differences of sickle cell trait (SCT) and normal red blood cells.
    Zheng Y; Cachia MA; Ge J; Xu Z; Wang C; Sun Y
    Lab Chip; 2015 Aug; 15(15):3138-46. PubMed ID: 26066022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Red cell morphology in sickle cell disease.
    Parilla M; Gurbuxani S
    Blood; 2020 Oct; 136(16):1893. PubMed ID: 33057703
    [No Abstract]   [Full Text] [Related]  

  • 36. Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry.
    Shaked NT; Finan JD; Guilak F; Wax A
    J Biomed Opt; 2010; 15(1):010505. PubMed ID: 20210420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure of normal and pathologic erythrocytes.
    Bessis M; Weed RI
    Adv Biol Med Phys; 1973; 14():35-91. PubMed ID: 4125146
    [No Abstract]   [Full Text] [Related]  

  • 38. Optical-mechanical signatures of cancer cells based on fluctuation profiles measured by interferometry.
    Bishitz Y; Gabai H; Girshovitz P; Shaked NT
    J Biophotonics; 2014 Aug; 7(8):624-30. PubMed ID: 23585163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human sickle erythrocytes: survival in chimpanzees.
    Castro O; Socha WW; Moor-Jankowski J
    J Med Primatol; 1982; 11(2):119-25. PubMed ID: 7131531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow dynamics of human sickle erythrocytes in the mesenteric microcirculation of the exchange-transfused rat.
    Kurantsin-Mills J; Jacobs HM; Klug PP; Lessin LS
    Microvasc Res; 1987 Sep; 34(2):152-67. PubMed ID: 3670112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.