BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21456913)

  • 1. Anxiety responses and neurochemical changes in a kaolin-induced rat model of hydrocephalus.
    Hwang YS; Shim I; Chang JW
    J Neurosurg Pediatr; 2011 Apr; 7(4):401-7. PubMed ID: 21456913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The behavioral change of locomotor activity in a kaolin-induced hydrocephalus rat model: evaluation of the effect on the dopaminergic system with progressive ventricle dilatation.
    Hwang YS; Shim I; Chang JW
    Neurosci Lett; 2009 Oct; 462(3):198-202. PubMed ID: 19616066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversibility of functionally injured neurotransmitter systems with shunt placement in hydrocephalic rats: implications for intellectual impairment in hydrocephalus.
    Tashiro Y; Drake JM
    J Neurosurg; 1998 Apr; 88(4):709-17. PubMed ID: 9525718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional injury of cholinergic, GABAergic and dopaminergic systems in the basal ganglia of adult rat with kaolin-induced hydrocephalus.
    Tashiro Y; Drake JM; Chakrabortty S; Hattori T
    Brain Res; 1997 Oct; 770(1-2):45-52. PubMed ID: 9372201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain damage in neonatal rats following kaolin induction of hydrocephalus.
    Khan OH; Enno TL; Del Bigio MR
    Exp Neurol; 2006 Aug; 200(2):311-20. PubMed ID: 16624304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of learning and memory impairments with changes in the septohippocampal cholinergic system in rats with kaolin-induced hydrocephalus.
    Shim I; Ha Y; Chung JY; Lee HJ; Yang KH; Chang JW
    Neurosurgery; 2003 Aug; 53(2):416-25; discussion 425. PubMed ID: 12925261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communicating hydrocephalus in adult rats with kaolin obstruction of the basal cisterns or the cortical subarachnoid space.
    Li J; McAllister JP; Shen Y; Wagshul ME; Miller JM; Egnor MR; Johnston MG; Haacke EM; Walker ML
    Exp Neurol; 2008 Jun; 211(2):351-61. PubMed ID: 18433747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catecholamine alterations in experimental hydrocephalus.
    Miyake H; Eghwrudjakpor PO; Sakamoto T; Mori K
    Childs Nerv Syst; 1992 Aug; 8(5):243-6. PubMed ID: 1394262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin.
    Lopes Lda S; Slobodian I; Del Bigio MR
    Exp Neurol; 2009 Sep; 219(1):187-96. PubMed ID: 19460371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental hydrocephalus of the rat, produced by cisternal injection of kaolin-solution (author's transl)].
    Yamaki T; Odake G; Naruse S; Ibata Y; Nojo Y
    No Shinkei Geka; 1977 Jun; 5(6):537-40. PubMed ID: 578917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus.
    Di Curzio DL; Buist RJ; Del Bigio MR
    Exp Neurol; 2013 Oct; 248():112-28. PubMed ID: 23769908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations.
    Del Bigio MR; Crook CR; Buist R
    Exp Neurol; 1997 Nov; 148(1):256-64. PubMed ID: 9398467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrocephalus induced via intraventricular kaolin injection in adult rats.
    Shaolin Z; Zhanxiang W; Hao X; Feifei Z; Caiquan H; Donghan C; Jianfeng B; Feng L; Shanghang S
    Folia Neuropathol; 2015; 53(1):60-8. PubMed ID: 25909876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of HGF, MMP-9 and TGF-β1 in the CSF and cerebral tissue of adult rats with hydrocephalus.
    Zhang S; Chen D; Huang C; Bao J; Wang Z
    Int J Neurosci; 2013 Jun; 123(6):392-9. PubMed ID: 23270462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total sialic acid levels decrease in the periventricular area of infantile rats with hydrocephalus.
    Etus V; Belce A
    Childs Nerv Syst; 2003 Dec; 19(12):825-8. PubMed ID: 14615897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activities of noradrenergic and dopaminergic neuron systems in experimental hydrocephalus.
    Miwa S; Inagaki C; Fujiwara M; Takaori S
    J Neurosurg; 1982 Jul; 57(1):67-73. PubMed ID: 7086502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrospinal fluid volume measurements in hydrocephalic rats.
    Basati S; Desai B; Alaraj A; Charbel F; Linninger A
    J Neurosurg Pediatr; 2012 Oct; 10(4):347-54. PubMed ID: 22880890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSF flow pathways through the ventricle-cistern interfaces in kaolin-induced hydrocephalus rats-laboratory investigation.
    Yoon JS; Nam TK; Kwon JT; Park SW; Park YS
    Childs Nerv Syst; 2015 Dec; 31(12):2277-81. PubMed ID: 26351074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus.
    Del Bigio MR; Khan OH; da Silva Lopes L; Juliet PA
    J Neuropathol Exp Neurol; 2012 Apr; 71(4):274-88. PubMed ID: 22437339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gray matter metabolism in acute and chronic hydrocephalus.
    Kondziella D; Eyjolfsson EM; Saether O; Sonnewald U; Risa O
    Neuroscience; 2009 Mar; 159(2):570-7. PubMed ID: 19171182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.