BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 21457104)

  • 21. Glutathione and Nitric Oxide: Key Team Players in Use and Disuse of Skeletal Muscle.
    Baldelli S; Ciccarone F; Limongi D; Checconi P; Palamara AT; Ciriolo MR
    Nutrients; 2019 Sep; 11(10):. PubMed ID: 31575008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The molecular basis of skeletal muscle atrophy.
    Jackman RW; Kandarian SC
    Am J Physiol Cell Physiol; 2004 Oct; 287(4):C834-43. PubMed ID: 15355854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions.
    Mirzoev TM; Sharlo KA; Shenkman BS
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia.
    Wall BT; Dirks ML; van Loon LJ
    Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction and Analysis of Disuse Atrophy Model of the Gastrocnemius Muscle in Chicken.
    Mo J; Wang Z; Liu Q; Li Z; Nie Q
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neutralizing mitochondrial ROS does not rescue muscle atrophy induced by hindlimb unloading in female mice.
    Eshima H; Siripoksup P; Mahmassani ZS; Johnson JM; Ferrara PJ; Verkerke ARP; Salcedo A; Drummond MJ; Funai K
    J Appl Physiol (1985); 2020 Jul; 129(1):124-132. PubMed ID: 32552434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid hydroperoxides promote sarcopenia through carbonyl stress.
    Eshima H; Shahtout JL; Siripoksup P; Pearson MJ; Mahmassani ZS; Ferrara PJ; Lyons AW; Maschek JA; Peterlin AD; Verkerke ARP; Johnson JM; Salcedo A; Petrocelli JJ; Miranda ER; Anderson EJ; Boudina S; Ran Q; Cox JE; Drummond MJ; Funai K
    Elife; 2023 Mar; 12():. PubMed ID: 36951533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superoxide-mediated oxidative stress accelerates skeletal muscle atrophy by synchronous activation of proteolytic systems.
    Jang YC; Rodriguez K; Lustgarten MS; Muller FL; Bhattacharya A; Pierce A; Choi JJ; Lee NH; Chaudhuri A; Richardson AG; Van Remmen H
    Geroscience; 2020 Dec; 42(6):1579-1591. PubMed ID: 32451848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative stress and skeletal muscle dysfunction with aging.
    Aoi W; Sakuma K
    Curr Aging Sci; 2011 Jul; 4(2):101-9. PubMed ID: 21235498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From physical inactivity to immobilization: Dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy.
    Pierre N; Appriou Z; Gratas-Delamarche A; Derbré F
    Free Radic Biol Med; 2016 Sep; 98():197-207. PubMed ID: 26744239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Markers of oxidative stress in the skeletal muscle of patients on haemodialysis.
    Crowe AV; McArdle A; McArdle F; Pattwell DM; Bell GM; Kemp GJ; Bone JM; Griffiths RD; Jackson MJ
    Nephrol Dial Transplant; 2007 Apr; 22(4):1177-83. PubMed ID: 17213227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear factor-kappa B signaling in skeletal muscle atrophy.
    Li H; Malhotra S; Kumar A
    J Mol Med (Berl); 2008 Oct; 86(10):1113-26. PubMed ID: 18574572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How Postural Muscle Senses Disuse? Early Signs and Signals.
    Shenkman BS
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.
    Cunha TF; Bechara LR; Bacurau AV; Jannig PR; Voltarelli VA; Dourado PM; Vasconcelos AR; Scavone C; Ferreira JC; Brum PC
    J Appl Physiol (1985); 2017 Apr; 122(4):817-827. PubMed ID: 28104751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis.
    Abrigo J; Rivera JC; Aravena J; Cabrera D; Simon F; Ezquer F; Ezquer M; Cabello-Verrugio C
    Oxid Med Cell Longev; 2016; 2016():9047821. PubMed ID: 27579157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tetramethylpyrazine ameliorated disuse-induced gastrocnemius muscle atrophy in hindlimb unloading rats through suppression of Ca
    Hu NF; Chang H; Du B; Zhang QW; Arfat Y; Dang K; Gao YF
    Appl Physiol Nutr Metab; 2017 Feb; 42(2):117-127. PubMed ID: 28056188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive oxygen and nitrogen species in skeletal muscle: acute and long-term effects.
    Bottinelli R; Westerblad H
    J Physiol; 2011 May; 589(Pt 9):2117-8. PubMed ID: 21532033
    [No Abstract]   [Full Text] [Related]  

  • 38. Oxidative stress and muscle homeostasis.
    Musarò A; Fulle S; Fanò G
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):236-42. PubMed ID: 20098320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using MRI to measure in vivo free radical production and perfusion dynamics in a mouse model of elevated oxidative stress and neurogenic atrophy.
    Ahn B; Smith N; Saunders D; Ranjit R; Kneis P; Towner RA; Van Remmen H
    Redox Biol; 2019 Sep; 26():101308. PubMed ID: 31470261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation: Influence of ageing and surgery.
    Suetta C
    Dan Med J; 2017 Aug; 64(8):. PubMed ID: 28869034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.