BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21457502)

  • 1. The effect of light on critical illness.
    Castro R; Angus DC; Rosengart MR
    Crit Care; 2011 Mar; 15(2):218. PubMed ID: 21457502
    [No Abstract]   [Full Text] [Related]  

  • 2. Nocturnal light pollution and underexposure to daytime sunlight: Complementary mechanisms of circadian disruption and related diseases.
    Smolensky MH; Sackett-Lundeen LL; Portaluppi F
    Chronobiol Int; 2015; 32(8):1029-48. PubMed ID: 26374931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indoor lighting design for healthier workplaces: natural and electric light assessment for suitable circadian stimulus.
    Aguilar-Carrasco MT; Domínguez-Amarillo S; Acosta I; Sendra JJ
    Opt Express; 2021 Sep; 29(19):29899-29917. PubMed ID: 34614725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Annual variation in daily light exposure and circadian change of melatonin and cortisol concentrations at a northern latitude with large seasonal differences in photoperiod length.
    Adamsson M; Laike T; Morita T
    J Physiol Anthropol; 2016 Jul; 36(1):6. PubMed ID: 27435153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High sensitivity and interindividual variability in the response of the human circadian system to evening light.
    Phillips AJK; Vidafar P; Burns AC; McGlashan EM; Anderson C; Rajaratnam SMW; Lockley SW; Cain SW
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):12019-12024. PubMed ID: 31138694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats.
    Molcan L; Sutovska H; Okuliarova M; Senko T; Krskova L; Zeman M
    Life Sci; 2019 Aug; 231():116568. PubMed ID: 31202842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure to long summer days affects the human melatonin and cortisol rhythms.
    Vondrasová D; Hájek I; Illnerová H
    Brain Res; 1997 Jun; 759(1):166-70. PubMed ID: 9219878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of nocturnal bright light on saliva melatonin, core body temperature and sleep propensity rhythms in human subjects.
    Kubota T; Uchiyama M; Suzuki H; Shibui K; Kim K; Tan X; Tagaya H; Okawa M; Inoue S
    Neurosci Res; 2002 Feb; 42(2):115-22. PubMed ID: 11849730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resetting of circadian melatonin and cortisol rhythms in humans by ordinary room light.
    Boivin DB; Czeisler CA
    Neuroreport; 1998 Mar; 9(5):779-82. PubMed ID: 9579664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward optimizing lighting as a countermeasure to sleep and circadian disruption in space flight.
    Fucci RL; Gardner J; Hanifin JP; Jasser S; Byrne B; Gerner E; Rollag M; Brainard GC
    Acta Astronaut; 2005; 56(9-12):1017-24. PubMed ID: 15838948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light- and temperature-dependence of the melatonin secretion rhythm in the pineal organ of the lamprey, Lampetra japonica.
    Samejima M; Shavali S; Tamotsu S; Uchida K; Morita Y; Fukuda A
    Jpn J Physiol; 2000 Aug; 50(4):437-42. PubMed ID: 11082542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nocturnal melatonin secretion is not suppressed by light exposure behind the knee in humans.
    Hébert M; Martin SK; Eastman CI
    Neurosci Lett; 1999 Oct; 274(2):127-30. PubMed ID: 10553954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twenty-four-hour patterns of pineal melatonin and pituitary and plasma prolactin in male rats under 'natural' and artificial lighting conditions.
    Laakso ML; Porkka-Heiskanen T; Alila A; Peder M; Johansson G
    Neuroendocrinology; 1988 Sep; 48(3):308-13. PubMed ID: 3185865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronomics: circadian lead of extrapineal vs. pineal melatonin rhythms with an infradian hypothalamic exploration.
    Zeman M; Józsa R; Cornélissen G; Stebelova K; Bubenik G; Olah A; Poeggeler B; Huether G; Hardeland R; Nagy G; Czernus V; Pan W; Otsuka K; Halberg F
    Biomed Pharmacother; 2005 Oct; 59 Suppl 1():S213-9. PubMed ID: 16275497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On melatonin suppression from polychromatic and narrowband light.
    Bullough JD; Bierman A; Figueiro MG; Rea MS
    Chronobiol Int; 2008 Jul; 25(4):653-6. PubMed ID: 18622822
    [No Abstract]   [Full Text] [Related]  

  • 16. The impact of light from computer monitors on melatonin levels in college students.
    Figueiro MG; Wood B; Plitnick B; Rea MS
    Neuro Endocrinol Lett; 2011; 32(2):158-63. PubMed ID: 21552190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-Induced Behavioral Quiescence and Abnormal Rest-Activity Rhythms During Critical Illness.
    Maas MB; Lizza BD; Kim M; Abbott SM; Gendy M; Reid KJ; Zee PC
    Crit Care Med; 2020 Jun; 48(6):862-871. PubMed ID: 32317592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue.
    Pauley SM
    Med Hypotheses; 2004; 63(4):588-96. PubMed ID: 15325001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative calculation of human melatonin suppression induced by inappropriate light at night.
    Meng Y; He Z; Yin J; Zhang Y; Zhang T
    Med Biol Eng Comput; 2011 Sep; 49(9):1083-8. PubMed ID: 21717231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-Methoxytryptophol rhythms in the chick pineal gland: effect of environmental lighting conditions.
    Zawilska JB; Skene DJ; Nowak JZ
    Neurosci Lett; 1998 Jul; 251(1):33-6. PubMed ID: 9714458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.