BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21457703)

  • 1. The chaperone action of bovine milk αS1- and αS2-caseins and their associated form αS-casein.
    Treweek TM; Thorn DC; Price WE; Carver JA
    Arch Biochem Biophys; 2011 Jun; 510(1):42-52. PubMed ID: 21457703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloid fibril formation by bovine milk alpha s2-casein occurs under physiological conditions yet is prevented by its natural counterpart, alpha s1-casein.
    Thorn DC; Ecroyd H; Sunde M; Poon S; Carver JA
    Biochemistry; 2008 Mar; 47(12):3926-36. PubMed ID: 18302322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Casein proteins as molecular chaperones.
    Morgan PE; Treweek TM; Lindner RA; Price WE; Carver JA
    J Agric Food Chem; 2005 Apr; 53(7):2670-83. PubMed ID: 15796610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dephosphorylation of alpha(s)- and beta-caseins and its effect on chaperone activity: a structural and functional investigation.
    Koudelka T; Hoffmann P; Carver JA
    J Agric Food Chem; 2009 Jul; 57(13):5956-64. PubMed ID: 19527030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function?
    Carver JA; Rekas A; Thorn DC; Wilson MR
    IUBMB Life; 2003 Dec; 55(12):661-8. PubMed ID: 14769002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha casein micelles show not only molecular chaperone-like aggregation inhibition properties but also protein refolding activity from the denatured state.
    Sakono M; Motomura K; Maruyama T; Kamiya N; Goto M
    Biochem Biophys Res Commun; 2011 Jan; 404(1):494-7. PubMed ID: 21144837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and quantification of alphaS1, alphaS2, beta, and kappa-caseins in water buffalo milk by reverse phase-high performance liquid chromatography and mass spectrometry.
    Feligini M; Bonizzi I; Buffoni JN; Cosenza G; Ramunno L
    J Agric Food Chem; 2009 Apr; 57(7):2988-92. PubMed ID: 19256489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic quantification of disulfide-linked polymers in raw and heated bovine milk.
    Chevalier F; Kelly AL
    J Agric Food Chem; 2010 Jun; 58(12):7437-44. PubMed ID: 20504025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alphaS- and beta-casein.
    Thorn DC; Meehan S; Sunde M; Rekas A; Gras SL; MacPhee CE; Dobson CM; Wilson MR; Carver JA
    Biochemistry; 2005 Dec; 44(51):17027-36. PubMed ID: 16363816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of hydrolysis of β-, αs1-, and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides.
    Miclo L; Roux E; Genay M; Brusseaux E; Poirson C; Jameh N; Perrin C; Dary A
    J Agric Food Chem; 2012 Jan; 60(2):554-65. PubMed ID: 22103626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methionine oxidation enhances κ-casein amyloid fibril formation.
    Koudelka T; Dehle FC; Musgrave IF; Hoffmann P; Carver JA
    J Agric Food Chem; 2012 Apr; 60(16):4144-55. PubMed ID: 22443319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dissociated form of kappa-casein is the precursor to its amyloid fibril formation.
    Ecroyd H; Thorn DC; Liu Y; Carver JA
    Biochem J; 2010 Jul; 429(2):251-60. PubMed ID: 20441567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of alphaS1-casein with curcumin and its biological implications.
    Sneharani AH; Singh SA; Appu Rao AG
    J Agric Food Chem; 2009 Nov; 57(21):10386-91. PubMed ID: 19831420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational efficiency of casein transcripts in the mammary tissue of lactating ruminants.
    Bevilacqua C; Helbling JC; Miranda G; Martin P
    Reprod Nutr Dev; 2006; 46(5):567-78. PubMed ID: 17107646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of copolymers of beta-lactoglobulin, alpha-lactalbumin, kappa-casein, and alphas1-casein generated by pressurization and thermal treatment of raw milk.
    Nabhan MA; Girardet JM; Campagna S; Gaillard JL; Le Roux Y
    J Dairy Sci; 2004 Nov; 87(11):3614-22. PubMed ID: 15483144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of reducing/nonreducing two-dimensional electrophoresis for the study of disulfide-mediated interactions between proteins in raw and heated bovine milk.
    Chevalier F; Hirtz C; Sommerer N; Kelly AL
    J Agric Food Chem; 2009 Jul; 57(13):5948-55. PubMed ID: 19526987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent labeling study of plasminogen concentration and location in simulated bovine milk systems.
    Wang L; Hayes KD; Mauer LJ
    J Dairy Sci; 2006 Jan; 89(1):58-70. PubMed ID: 16357268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperone-like activity of beta-casein.
    Zhang X; Fu X; Zhang H; Liu C; Jiao W; Chang Z
    Int J Biochem Cell Biol; 2005 Jun; 37(6):1232-40. PubMed ID: 15778087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of monoclonal antibody directed against bovine alpha s2-casein.
    Leung CT; Kuzmanoff KM; Beattie CW
    J Dairy Sci; 1991 Sep; 74(9):2872-8. PubMed ID: 1723415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.