These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 21458072)
21. Critical load analysis in hazard assessment of metals using a Unit World Model. Gandhi N; Bhavsar SP; Diamond ML Environ Toxicol Chem; 2011 Sep; 30(9):2157-66. PubMed ID: 21713970 [TBL] [Abstract][Full Text] [Related]
22. Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices. Acero JL; Benitez FJ; Real FJ; Roldan G Water Res; 2010 Jul; 44(14):4158-70. PubMed ID: 20605184 [TBL] [Abstract][Full Text] [Related]
23. Temporal analysis of net fluvial methylmercury loading in a dystrophic and a clear water lake. Mills RB; Bodek T; Paterson AM; Blais JM; Lean DR Sci Total Environ; 2009 Aug; 407(16):4696-702. PubMed ID: 19447474 [TBL] [Abstract][Full Text] [Related]
24. Mercury cycling and species mass balances in four North American lakes. Qureshi A; MacLeod M; Scheringer M; Hungerbühler K Environ Pollut; 2009 Feb; 157(2):452-62. PubMed ID: 19004534 [TBL] [Abstract][Full Text] [Related]
25. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases. van Zelm R; Stam G; Huijbregts MA; van de Meent D Chemosphere; 2013 Jan; 90(2):312-7. PubMed ID: 22884491 [TBL] [Abstract][Full Text] [Related]
26. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario. He T; Lu J; Yang F; Feng X Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225 [TBL] [Abstract][Full Text] [Related]
27. A fugacity model assessment of ibuprofen, diclofenac, carbamazepine, and their transformation product concentrations in an aquatic environment. Nurmi TMA; Kiljunen TK; Knuutinen JS Environ Sci Pollut Res Int; 2019 Jan; 26(1):328-341. PubMed ID: 30397752 [TBL] [Abstract][Full Text] [Related]
28. Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada--occurrence and treatment efficiency. Kleywegt S; Pileggi V; Yang P; Hao C; Zhao X; Rocks C; Thach S; Cheung P; Whitehead B Sci Total Environ; 2011 Mar; 409(8):1481-8. PubMed ID: 21315426 [TBL] [Abstract][Full Text] [Related]
29. Evaluating the fate of six common pharmaceuticals using a reactive transport model: insights from a stream tracer test. Riml J; Wörman A; Kunkel U; Radke M Sci Total Environ; 2013 Aug; 458-460():344-54. PubMed ID: 23669580 [TBL] [Abstract][Full Text] [Related]
30. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Arp HPH; Brown TN; Berger U; Hale SE Environ Sci Process Impacts; 2017 Jul; 19(7):939-955. PubMed ID: 28628174 [TBL] [Abstract][Full Text] [Related]
31. Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. Zuccato E; Castiglioni S; Fanelli R J Hazard Mater; 2005 Jul; 122(3):205-9. PubMed ID: 15967275 [TBL] [Abstract][Full Text] [Related]
32. Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Yamamoto H; Nakamura Y; Moriguchi S; Nakamura Y; Honda Y; Tamura I; Hirata Y; Hayashi A; Sekizawa J Water Res; 2009 Feb; 43(2):351-62. PubMed ID: 19041113 [TBL] [Abstract][Full Text] [Related]
33. Considering ionic state in modeling sorption of pharmaceuticals to sewage sludge. Rybacka A; Andersson PL Chemosphere; 2016 Dec; 165():284-293. PubMed ID: 27657821 [TBL] [Abstract][Full Text] [Related]
34. Modelling the influence of thermal stratification and complete mixing on the distribution and fluxes of polychlorinated biphenyls in the water column of Ispra Bay (Lake Maggiore). Dueri S; Castro-Jiménez J; Zaldívar JM Chemosphere; 2009 May; 75(9):1266-72. PubMed ID: 19251304 [TBL] [Abstract][Full Text] [Related]
35. Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part I: priority list for environmental risk assessment of pharmaceuticals. Perazzolo C; Morasch B; Kohn T; Magnet A; Thonney D; Chèvre N Environ Toxicol Chem; 2010 Aug; 29(8):1649-57. PubMed ID: 20821616 [TBL] [Abstract][Full Text] [Related]
36. Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA. Byer JD; Struger J; Sverko E; Klawunn P; Todd A Chemosphere; 2011 Feb; 82(8):1155-60. PubMed ID: 21215422 [TBL] [Abstract][Full Text] [Related]
37. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. Bendz D; Paxéus NA; Ginn TR; Loge FJ J Hazard Mater; 2005 Jul; 122(3):195-204. PubMed ID: 15967274 [TBL] [Abstract][Full Text] [Related]
38. A review of multimedia transport and fate models for chemicals: Principles, features and applicability. Su C; Zhang H; Cridge C; Liang R Sci Total Environ; 2019 Jun; 668():881-892. PubMed ID: 31018472 [TBL] [Abstract][Full Text] [Related]
39. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Padhye LP; Yao H; Kung'u FT; Huang CH Water Res; 2014 Mar; 51():266-76. PubMed ID: 24262763 [TBL] [Abstract][Full Text] [Related]
40. Polar organic chemical integrative sampler (POCIS): application for monitoring organic micropollutants in wastewater effluent and surface water. Miège C; Budzinski H; Jacquet R; Soulier C; Pelte T; Coquery M J Environ Monit; 2012 Feb; 14(2):626-35. PubMed ID: 22193508 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]