These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21458273)

  • 41. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly.
    Pereira S; Zille A; Micheletti E; Moradas-Ferreira P; De Philippis R; Tamagnini P
    FEMS Microbiol Rev; 2009 Sep; 33(5):917-41. PubMed ID: 19453747
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [The accumulation and degradation dynamics of cyanophycin in cyanobacteria grown in symbiotic associations with plant tissues and cells].
    Gorelova OA; Kleĭmenov SIu
    Mikrobiologiia; 2003; 72(3):361-9. PubMed ID: 12901011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix.
    Sihvonen LM; Lyra C; Fewer DP; Rajaniemi-Wacklin P; Lehtimäki JM; Wahlsten M; Sivonen K
    FEMS Microbiol Ecol; 2007 Jul; 61(1):74-84. PubMed ID: 17466025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Branching and intercellular communication in the Section V cyanobacterium Mastigocladus laminosus, a complex multicellular prokaryote.
    Nürnberg DJ; Mariscal V; Parker J; Mastroianni G; Flores E; Mullineaux CW
    Mol Microbiol; 2014 Mar; 91(5):935-49. PubMed ID: 24383541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reflections on Cyanobacterial Chromatic Acclimation: Exploring the Molecular Bases of Organismal Acclimation and Motivation for Rethinking the Promotion of Equity in STEM.
    Montgomery BL
    Microbiol Mol Biol Rev; 2022 Sep; 86(3):e0010621. PubMed ID: 35727025
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light-dependent governance of cell shape dimensions in cyanobacteria.
    Montgomery BL
    Front Microbiol; 2015; 6():514. PubMed ID: 26074902
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Harnessing transcription for bioproduction in cyanobacteria.
    Stensjö K; Vavitsas K; Tyystjärvi T
    Physiol Plant; 2018 Feb; 162(2):148-155. PubMed ID: 28762505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell differentiation and colony alteration of an edible terrestrial cyanobacterium Nostoc flagelliforme, in liquid suspension cultures.
    Liu XJ; Chen F
    Folia Microbiol (Praha); 2003; 48(5):619-26. PubMed ID: 14976718
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasticity first: molecular signatures of a complex morphological trait in filamentous cyanobacteria.
    Koch R; Kupczok A; Stucken K; Ilhan J; Hammerschmidt K; Dagan T
    BMC Evol Biol; 2017 Aug; 17(1):209. PubMed ID: 28859625
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation.
    Guida BS; Garcia-Pichel F
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5712-7. PubMed ID: 27140633
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Challenges in the Application of Synthetic Biology Toward Synthesis of Commodity Products by Cyanobacteria via "Direct Conversion".
    Du W; Burbano PC; Hellingwerf KJ; Branco Dos Santos F
    Adv Exp Med Biol; 2018; 1080():3-26. PubMed ID: 30091089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Getting into shape: How do rod-like bacteria control their geometry?
    Amir A; van Teeffelen S
    Syst Synth Biol; 2014 Sep; 8(3):227-35. PubMed ID: 25136385
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The selective value of bacterial shape.
    Young KD
    Microbiol Mol Biol Rev; 2006 Sep; 70(3):660-703. PubMed ID: 16959965
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the motile hormogonia of Mastigocladus laminosus.
    Hernández-Muñiz W; Stevens SE
    J Bacteriol; 1987 Jan; 169(1):218-23. PubMed ID: 3098731
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Occurrence of the 32-kDa QB-binding protein of photosystem II in vegetative cells, heterocysts and akinetes ofAzolla carotiniana cyanobionts.
    Braun-Howland EB; Nierzwicki-Bauer SA
    Planta; 1990 Sep; 180(3):361-71. PubMed ID: 24202015
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Occurrence of the 32-kDa QB-binding protein of photosystem II in vegetative cells, dheterocysts and akinetes of Azolla carotiniana cyanobionts.
    Braun-Howland EB; Nierzwicki-Bauer SA
    Planta; 1990 Feb; 180(3):361-71. PubMed ID: 24202014
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Formation of one-dimensional patterns by stochastic processes and by filamentous blue-green algae.
    Wolk CP; Quine MP
    Dev Biol; 1975 Oct; 46(2):370-82. PubMed ID: 810378
    [No Abstract]   [Full Text] [Related]  

  • 58. Differences in cell division rates drive the evolution of terminal differentiation in microbes.
    Rodrigues JF; Rankin DJ; Rossetti V; Wagner A; Bagheri HC
    PLoS Comput Biol; 2012; 8(4):e1002468. PubMed ID: 22511858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diversity Takes Shape: Understanding the Mechanistic and Adaptive Basis of Bacterial Morphology.
    Kysela DT; Randich AM; Caccamo PD; Brun YV
    PLoS Biol; 2016 Oct; 14(10):e1002565. PubMed ID: 27695035
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The heterocysts of blue-green algae (Myxophyceae).
    Tyagi VV
    Biol Rev Camb Philos Soc; 1975 Aug; 50(3):247-84. PubMed ID: 810188
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.