BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2802 related articles for article (PubMed ID: 21458551)

  • 1. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro macrophage uptake and in vivo biodistribution of long-circulation nanoparticles with poly(ethylene-glycol)-modified PLA (BAB type) triblock copolymer.
    Shan X; Liu C; Yuan Y; Xu F; Tao X; Sheng Y; Zhou H
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):303-11. PubMed ID: 19450955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of aqueous solubility of grafted moiety on the physicochemical properties of poly(d,l-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2010 Mar; 388(1-2):263-73. PubMed ID: 20060450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain.
    Parikh T; Bommana MM; Squillante E
    Eur J Pharm Biopharm; 2010 Mar; 74(3):442-50. PubMed ID: 19941957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation.
    Yang A; Yang L; Liu W; Li Z; Xu H; Yang X
    Int J Pharm; 2007 Feb; 331(1):123-32. PubMed ID: 17097246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery.
    Song N; Liu W; Tu Q; Liu R; Zhang Y; Wang J
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):454-63. PubMed ID: 21719259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules.
    Giovino C; Ayensu I; Tetteh J; Boateng JS
    Int J Pharm; 2012 May; 428(1-2):143-51. PubMed ID: 22405987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved antifungal activity of itraconazole-loaded PEG/PLA nanoparticles.
    Essa S; Louhichi F; Raymond M; Hildgen P
    J Microencapsul; 2013; 30(3):205-17. PubMed ID: 22894166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced cellular uptake of folic acid-conjugated PLGA-PEG nanoparticles loaded with vincristine sulfate in human breast cancer.
    Chen J; Li S; Shen Q; He H; Zhang Y
    Drug Dev Ind Pharm; 2011 Nov; 37(11):1339-46. PubMed ID: 21524153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles.
    Zhang Z; Feng SS
    Biomaterials; 2006 Jul; 27(21):4025-33. PubMed ID: 16564085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines.
    Youm I; Youan BB
    Hear Res; 2013 Oct; 304():7-19. PubMed ID: 23747541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density.
    Vila A; Gill H; McCallion O; Alonso MJ
    J Control Release; 2004 Aug; 98(2):231-44. PubMed ID: 15262415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microporous structure and drug release kinetics of polymeric nanoparticles.
    Sant S; Thommes M; Hildgen P
    Langmuir; 2008 Jan; 24(1):280-7. PubMed ID: 18052222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: Cellular toxicity, uptake, and kinetic studies.
    Aksungur P; Demirbilek M; Denkbaş EB; Vandervoort J; Ludwig A; Unlü N
    J Control Release; 2011 May; 151(3):286-94. PubMed ID: 21241752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
    Feng SS; Mei L; Anitha P; Gan CW; Zhou W
    Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles.
    Rabanel JM; Faivre J; Tehrani SF; Lalloz A; Hildgen P; Banquy X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10374-85. PubMed ID: 25909493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles of poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymers for protein drug delivery.
    Lee SH; Zhang Z; Feng SS
    Biomaterials; 2007 Apr; 28(11):2041-50. PubMed ID: 17250886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect.
    Zhan C; Gu B; Xie C; Li J; Liu Y; Lu W
    J Control Release; 2010 Apr; 143(1):136-42. PubMed ID: 20056123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 141.