BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21458627)

  • 1. Atomic spectrometry methods for wine analysis: a critical evaluation and discussion of recent applications.
    Grindlay G; Mora J; Gras L; de Loos-Vollebregt MT
    Anal Chim Acta; 2011 Apr; 691(1-2):18-32. PubMed ID: 21458627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a microwave-based desolvation system for multi-elemental analysis of wine by inductively coupled plasma based techniques.
    Grindlay G; Mora J; Maestre S; Gras L
    Anal Chim Acta; 2008 Nov; 629(1-2):24-37. PubMed ID: 18940318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry.
    Grindlay G; Mora J; Gras L; de Loos-Vollebregt MT
    Anal Chim Acta; 2009 Oct; 652(1-2):154-60. PubMed ID: 19786176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of metals in wine with atomic spectroscopy (flame-AAS, GF-AAS and ICP-AES); a review.
    Aceto M; Abollino O; Bruzzoniti MC; Mentasti E; Sarzanini C; Malandrino M
    Food Addit Contam; 2002 Feb; 19(2):126-33. PubMed ID: 11820494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content.
    Ajtony Z; Szoboszlai N; Suskó EK; Mezei P; György K; Bencs L
    Talanta; 2008 Jul; 76(3):627-34. PubMed ID: 18585331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal standardization--atomic spectrometry and geographical pattern recognition techniques for the multielement analysis and classification of Catalonian red wines.
    Iglesias M; Besalú E; Anticó E
    J Agric Food Chem; 2007 Jan; 55(2):219-25. PubMed ID: 17227045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metals in wine--impact on wine quality and health outcomes.
    Tariba B
    Biol Trace Elem Res; 2011 Dec; 144(1-3):143-56. PubMed ID: 21479541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace level determination of cadmium in wine by on-line preconcentration in a 5-Br-PADAP functionalized wool-packed microcolumn coupled to flame atomic absorption spectrometry.
    Monasterio RP; Wuilloud RG
    Talanta; 2009 Oct; 79(5):1484-8. PubMed ID: 19635388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of lead in wine and rum samples by flow injection-hydride generation-atomic absorption spectrometry.
    Elçi L; Arslan Z; Tyson JF
    J Hazard Mater; 2009 Mar; 162(2-3):880-5. PubMed ID: 18644672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Recent development of speciation analysis for trace arsenic].
    Zhu ZL; Qin Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):1176-80. PubMed ID: 18720828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential absorption of metals from soil to diverse vine varieties from the Valley of Tulum (Argentina): consequences to evaluate wine provenance.
    Fabani MP; Toro ME; Vázquez F; Díaz MP; Wunderlin DA
    J Agric Food Chem; 2009 Aug; 57(16):7409-16. PubMed ID: 19645479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of preparative and analytical procedures for the study of proteins in grape juice and wine.
    Le Bourse D; Jégou S; Conreux A; Villaume S; Jeandet P
    Anal Chim Acta; 2010 May; 667(1-2):33-42. PubMed ID: 20441863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wine chemistry and flavor: looking into the crystal glass.
    Ebeler SE; Thorngate JH
    J Agric Food Chem; 2009 Sep; 57(18):8098-108. PubMed ID: 19719127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of lead and cadmium in wines by graphite furnace atomic absorption spectrometry.
    Kim M
    Food Addit Contam; 2004 Feb; 21(2):154-7. PubMed ID: 14754637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of tandem column solid phase extraction and flame atomic absorption spectrometry for the determination of inorganic and organically bound forms of iron in wine.
    Pohl P; Prusisz B
    Talanta; 2009 Mar; 77(5):1732-8. PubMed ID: 19159790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method development for the determination of lead in wine using electrothermal atomic absorption spectrometry comparing platform and filter furnace atomizers and different chemical modifiers.
    Dessuy MB; Vale MG; Souza AS; Ferreira SL; Welz B; Katskov DA
    Talanta; 2008 Feb; 74(5):1321-9. PubMed ID: 18371785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace element determination of Argentine wines using ETAAS and USN-ICP-OES.
    Lara R; Cerutti S; Salonia JA; Olsina RA; Martinez LD
    Food Chem Toxicol; 2005 Feb; 43(2):293-7. PubMed ID: 15621342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct determination of total sulfur in wine using a continuum-source atomic-absorption spectrometer and an air-acetylene flame.
    Huang MD; Becker-Ross H; Florek S; Heitmann U; Okruss M
    Anal Bioanal Chem; 2005 Aug; 382(8):1877-81. PubMed ID: 15999269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus in wine: comparison of atomic absorption spectrometry methods.
    Chow H; Gump BH
    J Assoc Off Anal Chem; 1987; 70(1):61-3. PubMed ID: 3558277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of cadmium in wine by electrothermal atomic absorption spectrometry.
    Cvetković J; Arpadjan S; Karadjova I; Stafilov T
    Acta Pharm; 2006 Mar; 56(1):69-77. PubMed ID: 16613736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.