BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

667 related articles for article (PubMed ID: 21458667)

  • 1. The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair.
    Lammens K; Bemeleit DJ; Möckel C; Clausing E; Schele A; Hartung S; Schiller CB; Lucas M; Angermüller C; Söding J; Strässer K; Hopfner KP
    Cell; 2011 Apr; 145(1):54-66. PubMed ID: 21458667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex.
    Möckel C; Lammens K; Schele A; Hopfner KP
    Nucleic Acids Res; 2012 Jan; 40(2):914-27. PubMed ID: 21937514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the Rad50 DNA double-strand break repair protein in complex with DNA.
    Rojowska A; Lammens K; Seifert FU; Direnberger C; Feldmann H; Hopfner KP
    EMBO J; 2014 Dec; 33(23):2847-59. PubMed ID: 25349191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rad50 signature motif: essential to ATP binding and biological function.
    Moncalian G; Lengsfeld B; Bhaskara V; Hopfner KP; Karcher A; Alden E; Tainer JA; Paull TT
    J Mol Biol; 2004 Jan; 335(4):937-51. PubMed ID: 14698290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase.
    Hopfner KP; Karcher A; Craig L; Woo TT; Carney JP; Tainer JA
    Cell; 2001 May; 105(4):473-85. PubMed ID: 11371344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP puts the brake on DNA double-strand break repair: a new study shows that ATP switches the Mre11-Rad50-Nbs1 repair factor between signaling and processing of DNA ends.
    Hopfner KP
    Bioessays; 2014 Dec; 36(12):1170-8. PubMed ID: 25213441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the Mre11-Rad50-ATPγS complex: understanding the interplay between Mre11 and Rad50.
    Lim HS; Kim JS; Park YB; Gwon GH; Cho Y
    Genes Dev; 2011 May; 25(10):1091-104. PubMed ID: 21511873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae.
    Zhang X; Paull TT
    DNA Repair (Amst); 2005 Nov; 4(11):1281-94. PubMed ID: 16043424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair.
    Hopfner KP; Craig L; Moncalian G; Zinkel RA; Usui T; Owen BA; Karcher A; Henderson B; Bodmer JL; McMurray CT; Carney JP; Petrini JH; Tainer JA
    Nature; 2002 Aug; 418(6897):562-6. PubMed ID: 12152085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans.
    Chansel-Da Cruz M; Hohl M; Ceppi I; Kermasson L; Maggiorella L; Modesti M; de Villartay JP; Ileri T; Cejka P; Petrini JHJ; Revy P
    Cell Rep; 2020 Dec; 33(13):108559. PubMed ID: 33378670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling.
    Deshpande RA; Williams GJ; Limbo O; Williams RS; Kuhnlein J; Lee JH; Classen S; Guenther G; Russell P; Tainer JA; Paull TT
    EMBO J; 2014 Mar; 33(5):482-500. PubMed ID: 24493214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The characterization of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity.
    Ghosal G; Muniyappa K
    J Mol Biol; 2007 Sep; 372(4):864-882. PubMed ID: 17698079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination and processing of DNA ends during double-strand break repair: the role of the bacteriophage T4 Mre11/Rad50 (MR) complex.
    Almond JR; Stohr BA; Panigrahi AK; Albrecht DW; Nelson SW; Kreuzer KN
    Genetics; 2013 Nov; 195(3):739-55. PubMed ID: 23979587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LRET-derived HADDOCK structural models describe the conformational heterogeneity required for DNA cleavage by the Mre11-Rad50 DNA damage repair complex.
    Canny MD; Latham MP
    Elife; 2022 Jan; 11():. PubMed ID: 35084331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the Rad50 x Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy.
    Anderson DE; Trujillo KM; Sung P; Erickson HP
    J Biol Chem; 2001 Oct; 276(40):37027-33. PubMed ID: 11470800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimivirus reveals Mre11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids.
    Yoshida T; Claverie JM; Ogata H
    Virol J; 2011 Sep; 8():427. PubMed ID: 21899737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair.
    Williams RS; Moncalian G; Williams JS; Yamada Y; Limbo O; Shin DS; Groocock LM; Cahill D; Hitomi C; Guenther G; Moiani D; Carney JP; Russell P; Tainer JA
    Cell; 2008 Oct; 135(1):97-109. PubMed ID: 18854158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoinhibition of bacteriophage T4 Mre11 by its C-terminal domain.
    Gao Y; Nelson SW
    J Biol Chem; 2014 Sep; 289(38):26505-26513. PubMed ID: 25077970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes.
    Bhaskara V; Dupré A; Lengsfeld B; Hopkins BB; Chan A; Lee JH; Zhang X; Gautier J; Zakian V; Paull TT
    Mol Cell; 2007 Mar; 25(5):647-61. PubMed ID: 17349953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex.
    Connelly JC; Leach DR
    Trends Biochem Sci; 2002 Aug; 27(8):410-8. PubMed ID: 12151226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.