These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21458995)

  • 1. A new device for in situ static and dynamic calibration of force platforms.
    Hsieh HJ; Lu TW; Chen SC; Chang CM; Hung C
    Gait Posture; 2011 Apr; 33(4):701-5. PubMed ID: 21458995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-linear re-calibration of force platforms.
    Cappello A; Bagalà F; Cedraro A; Chiari L
    Gait Posture; 2011 Apr; 33(4):724-6. PubMed ID: 21392999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balance measures for discriminating between functionally unstable and stable ankles.
    Ross SE; Guskiewicz KM; Gross MT; Yu B
    Med Sci Sports Exerc; 2009 Feb; 41(2):399-407. PubMed ID: 19127184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of an instrumented treadmill using a precision-controlled device with artificial neural network-based error corrections.
    Hsieh HJ; Lin HC; Lu HL; Chen TY; Lu TW
    Gait Posture; 2016 Mar; 45():217-23. PubMed ID: 26979909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A force plate based method for the calibration of force/torque sensors.
    Faber GS; Chang CC; Kingma I; Schepers HM; Herber S; Veltink PH; Dennerlein JT
    J Biomech; 2012 Apr; 45(7):1332-8. PubMed ID: 22444348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for estimating subject-specific body segment inertial parameters in human movement analysis.
    Chen SC; Hsieh HJ; Lu TW; Tseng CH
    Gait Posture; 2011 Apr; 33(4):695-700. PubMed ID: 21458993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of measured center of pressure of a new stairway design for kinetic analysis of stair climbing.
    Yu B; Growney ES; Schultz FM; An KN
    J Biomech; 1996 Dec; 29(12):1625-8. PubMed ID: 8945662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A portable system for in-situ re-calibration of force platforms: theoretical validation.
    Cedraro A; Cappello A; Chiari L
    Gait Posture; 2008 Oct; 28(3):488-94. PubMed ID: 18450453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of an Artificial Neural Network Algorithm for a Low-Cost Insole Sensor to Estimate the Ground Reaction Force (GRF) and Calibrate the Center of Pressure (CoP).
    Choi HS; Lee CH; Shim M; Han JI; Baek YS
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re: A new device for in situ static and dynamic calibration of force platforms by Hsieh et al. [Gait and Posture 33 (2011) 701-705].
    Cappello A; Bagalà F; Chiari L
    Gait Posture; 2012 Jul; 36(3):653-4. PubMed ID: 22727719
    [No Abstract]   [Full Text] [Related]  

  • 11. Spot check and recalibration of stabilometric platforms.
    Morasso PG; Re C; Casadio M
    Technol Health Care; 2004; 12(4):293-304. PubMed ID: 15502280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for testing motion analysis laboratory measurement systems.
    Hakkarainen MJ; Bragge T; Liikavainio T; Arokoski J; Karjalainen PA; Tarvainen M
    J Biomech Eng; 2010 Nov; 132(11):114501. PubMed ID: 21034153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A portable system for in-situ re-calibration of force platforms: experimental validation.
    Cedraro A; Cappello A; Chiari L
    Gait Posture; 2009 Apr; 29(3):449-53. PubMed ID: 19111467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambulatory assessment of ankle and foot dynamics.
    Schepers HM; Koopman HF; Veltink PH
    IEEE Trans Biomed Eng; 2007 May; 54(5):895-902. PubMed ID: 17518287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ force plate calibration: 12 years' experience with an approach for correcting the point of force application.
    List R; Hitz M; Angst M; Taylor WR; Lorenzetti S
    Gait Posture; 2017 Oct; 58():98-102. PubMed ID: 28763716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple and practical method for evaluating overall measurement error of joint moments obtained by a force plate and a position sensing device.
    Miyazaki S
    Front Med Biol Eng; 1992; 4(4):257-70. PubMed ID: 1476954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters.
    Riemer R; Hsiao-Wecksler ET
    J Biomech Eng; 2009 Jan; 131(1):011007. PubMed ID: 19045923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A linear laser scanner to measure cross-sectional shape and area of biological specimens during mechanical testing.
    Vergari C; Pourcelot P; Holden L; Ravary-Plumioën B; Laugier P; Mitton D; Crevier-Denoix N
    J Biomech Eng; 2010 Oct; 132(10):105001. PubMed ID: 20887025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic assessment of center of pressure measurements from an instrumented AMTI treadmill with controlled precision.
    Fortune E; Crenshaw J; Lugade V; Kaufman KR
    Med Eng Phys; 2017 Apr; 42():99-104. PubMed ID: 28161106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network-based prediction of missing key features in vertical GRF-time recordings.
    Begg RK
    J Med Eng Technol; 2006; 30(5):315-22. PubMed ID: 16980287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.