BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 21458999)

  • 21. Integration of in silico and in vitro tools for scaffold optimization during drug discovery: predicting P-glycoprotein efflux.
    Desai PV; Sawada GA; Watson IA; Raub TJ
    Mol Pharm; 2013 Apr; 10(4):1249-61. PubMed ID: 23363443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico prediction of membrane permeability from calculated molecular parameters.
    Refsgaard HH; Jensen BF; Brockhoff PB; Padkjaer SB; Guldbrandt M; Christensen MS
    J Med Chem; 2005 Feb; 48(3):805-11. PubMed ID: 15689164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of an in silico model for predicting efflux substrates in Caco-2 cells.
    Zhang L; Balimane PV; Johnson SR; Chong S
    Int J Pharm; 2007 Oct; 343(1-2):98-105. PubMed ID: 17583455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting Passive Permeability of Drug-like Molecules from Chemical Structure: Where Are We?
    Broccatelli F; Salphati L; Plise E; Cheong J; Gobbi A; Lee ML; Aliagas I
    Mol Pharm; 2016 Dec; 13(12):4199-4208. PubMed ID: 27806577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests.
    Kim JS; Mitchell S; Kijek P; Tsume Y; Hilfinger J; Amidon GL
    Mol Pharm; 2006; 3(6):686-94. PubMed ID: 17140256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical QSAR Analysis of Passive Permeability Across Caco-2 Monolayers.
    Lanevskij K; Didziapetris R
    J Pharm Sci; 2019 Jan; 108(1):78-86. PubMed ID: 30321548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of physicochemical properties in the estimation of skin permeability: in vitro data assessment by Partial Least-Squares Regression.
    Chauhan P; Shakya M
    SAR QSAR Environ Res; 2010 Jul; 21(5-6):481-94. PubMed ID: 20818583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates.
    Shen M; Xiao Y; Golbraikh A; Gombar VK; Tropsha A
    J Med Chem; 2003 Jul; 46(14):3013-20. PubMed ID: 12825940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating human drug oral absorption kinetics from Caco-2 permeability using an absorption-disposition model: model development and evaluation and derivation of analytical solutions for k(a) and F(a).
    Usansky HH; Sinko PJ
    J Pharmacol Exp Ther; 2005 Jul; 314(1):391-9. PubMed ID: 15833900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. First-principle, structure-based prediction of hepatic metabolic clearance values in human.
    Li H; Sun J; Sui X; Liu J; Yan Z; Liu X; Sun Y; He Z
    Eur J Med Chem; 2009 Apr; 44(4):1600-6. PubMed ID: 18768239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biopharmaceutics classification system: validation and learnings of an in vitro permeability assay.
    Thiel-Demby VE; Humphreys JE; St John Williams LA; Ellens HM; Shah N; Ayrton AD; Polli JW
    Mol Pharm; 2009; 6(1):11-8. PubMed ID: 19248229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating the utility of momentum-space descriptors for predicting blood-brain barrier penetration.
    Al-Fahemi JH; Cooper DL; Allan NL
    J Mol Graph Model; 2007 Oct; 26(3):607-12. PubMed ID: 17300970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability.
    Mensch J; Melis A; Mackie C; Verreck G; Brewster ME; Augustijns P
    Eur J Pharm Biopharm; 2010 Mar; 74(3):495-502. PubMed ID: 20067834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hologram QSAR model for the prediction of human oral bioavailability.
    Moda TL; Montanari CA; Andricopulo AD
    Bioorg Med Chem; 2007 Dec; 15(24):7738-45. PubMed ID: 17870541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds.
    Prado-Prado FJ; González-Díaz H; de la Vega OM; Ubeira FM; Chou KC
    Bioorg Med Chem; 2008 Jun; 16(11):5871-80. PubMed ID: 18485714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and validation of a pharmacophore-based QSAR model for the prediction of CNS activity.
    Gozalbes R; Barbosa F; Nicolaï E; Horvath D; Froloff N
    ChemMedChem; 2009 Feb; 4(2):204-9. PubMed ID: 19097128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico model of drug permeability across sublingual mucosa.
    Goswami T; Kokate A; Jasti BR; Li X
    Arch Oral Biol; 2013 May; 58(5):545-51. PubMed ID: 23123066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships.
    Cheng A; Merz KM
    J Med Chem; 2003 Aug; 46(17):3572-80. PubMed ID: 12904062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.