These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21459114)

  • 1. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model.
    Zhang L; Gurao M; Yang KH; King AI
    J Neurosci Methods; 2011 May; 198(1):93-8. PubMed ID: 21459114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigate the Variations of the Head and Brain Response in a Rodent Head Impact Acceleration Model by Finite Element Modeling.
    Zhou R; Li Y; Cavanaugh JM; Zhang L
    Front Bioeng Biotechnol; 2020; 8():172. PubMed ID: 32258009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone.
    Patel PS; Shepherd DE; Hukins DW
    BMC Musculoskelet Disord; 2008 Oct; 9():137. PubMed ID: 18844988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of three animal models for concussion and serious brain injury.
    Viano DC; Hamberger A; Bolouri H; Säljö A
    Ann Biomed Eng; 2012 Jan; 40(1):213-26. PubMed ID: 22012080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of elastomeric foam parameters for simulations of complex loading.
    Petre MT; Erdemir A; Cavanagh PR
    Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):231-42. PubMed ID: 17132531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration of crushable foam plasticity models for synthetic bone material for use in finite element analysis of acetabular cup deformation and primary stability.
    Schulze C; Vogel D; Sander M; Bader R
    Comput Methods Biomech Biomed Engin; 2019 Jan; 22(1):25-37. PubMed ID: 30449160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling of human brain response to football helmet impacts.
    Darling T; Muthuswamy J; Rajan SD
    Comput Methods Biomech Biomed Engin; 2016 Oct; 19(13):1432-42. PubMed ID: 26867124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embedded axonal fiber tracts improve finite element model predictions of traumatic brain injury.
    Hajiaghamemar M; Wu T; Panzer MB; Margulies SS
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1109-1130. PubMed ID: 31811417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static Mechanical Properties of Expanded Polypropylene Crushable Foam.
    Rumianek P; Dobosz T; Nowak R; Dziewit P; Aromiński A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33419072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a crushable foam model for human trabecular bone.
    Soltanihafshejani N; Bitter T; Janssen D; Verdonschot N
    Med Eng Phys; 2021 Oct; 96():53-63. PubMed ID: 34565553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can sulci protect the brain from traumatic injury?
    Ho J; Kleiven S
    J Biomech; 2009 Sep; 42(13):2074-80. PubMed ID: 19679308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of brain tissue in tension at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of an Arbitrary Lagrangian-Eulerian Method to Modelling the Machining of Rigid Polyurethane Foam.
    Horak Z; Tichy P; Dvorak K; Vilimek M
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33800540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a risk model through the fusion of experimental data and finite element modeling: Application to car crash-induced TBI.
    Ahmadisoleymani SS; Missoum S
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):605-619. PubMed ID: 30773915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dressing type on 3D tissue microdeformations during negative pressure wound therapy: a computational study.
    Wilkes R; Zhao Y; Kieswetter K; Haridas B
    J Biomech Eng; 2009 Mar; 131(3):031012. PubMed ID: 19154071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Brain Modeling with Its Anatomical Structure and Realistic Material Properties for Brain Injury Prediction.
    Atsumi N; Nakahira Y; Tanaka E; Iwamoto M
    Ann Biomed Eng; 2018 May; 46(5):736-748. PubMed ID: 29404847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helmet liner evaluation to mitigate head response from primary blast exposure.
    Lockhart PA; Cronin DS
    Comput Methods Biomech Biomed Engin; 2015; 18(6):635-45. PubMed ID: 24559088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.