BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 21459137)

  • 1. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels.
    Asasutjarit R; Thanasanchokpibull S; Fuongfuchat A; Veeranondha S
    Int J Pharm; 2011 Jun; 411(1-2):128-35. PubMed ID: 21459137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoresponsive ophthalmic poloxamer/tween/carbopol in situ gels of a poorly water-soluble drug fluconazole: preparation and in vitro-in vivo evaluation.
    Lihong W; Xin C; Yongxue G; Yiying B; Gang C
    Drug Dev Ind Pharm; 2014 Oct; 40(10):1402-10. PubMed ID: 23944837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles.
    Lou J; Hu W; Tian R; Zhang H; Jia Y; Zhang J; Zhang L
    Int J Nanomedicine; 2014; 9():2517-25. PubMed ID: 24904211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept.
    Patel N; Thakkar V; Metalia V; Baldaniya L; Gandhi T; Gohel M
    Drug Dev Ind Pharm; 2016 Sep; 42(9):1406-23. PubMed ID: 26716613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Evaluation of Diclofenac Sodium Loaded-N-Trimethyl Chitosan Nanoparticles for Ophthalmic Use.
    Asasutjarit R; Theerachayanan T; Kewsuwan P; Veeranodha S; Fuongfuchat A; Ritthidej GC
    AAPS PharmSciTech; 2015 Oct; 16(5):1013-24. PubMed ID: 25609376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New method for ophthalmic delivery of azithromycin by poloxamer/carbopol-based in situ gelling system.
    Cao F; Zhang X; Ping Q
    Drug Deliv; 2010; 17(7):500-7. PubMed ID: 20500130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery.
    Al Khateb K; Ozhmukhametova EK; Mussin MN; Seilkhanov SK; Rakhypbekov TK; Lau WM; Khutoryanskiy VV
    Int J Pharm; 2016 Apr; 502(1-2):70-9. PubMed ID: 26899977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of a brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery.
    Li J; Liu H; Liu LL; Cai CN; Xin HX; Liu W
    Chem Pharm Bull (Tokyo); 2014; 62(10):1000-8. PubMed ID: 25099146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation and evaluation of thermosensitive flurbiprofen
    Maddiboyina B; Jhawat V; Desu PK; Gandhi S; Nakkala RK; Singh S
    J Biomater Sci Polym Ed; 2021 Aug; 32(12):1584-1597. PubMed ID: 33977874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies.
    Wei G; Xu H; Ding PT; Li SM; Zheng JM
    J Control Release; 2002 Sep; 83(1):65-74. PubMed ID: 12220839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications.
    Soliman KA; Ullah K; Shah A; Jones DS; Singh TRR
    Drug Discov Today; 2019 Aug; 24(8):1575-1586. PubMed ID: 31175956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system.
    Ma WD; Xu H; Wang C; Nie SF; Pan WS
    Int J Pharm; 2008 Feb; 350(1-2):247-56. PubMed ID: 17961940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermosensitive PEG-PCL-PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium.
    Luo Z; Jin L; Xu L; Zhang ZL; Yu J; Shi S; Li X; Chen H
    Drug Deliv; 2016; 23(1):63-8. PubMed ID: 24758189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-responsive, Pluronic-g-poly(acrylic acid) copolymers in situ gels for ophthalmic drug delivery: rheology, in vitro drug release, and in vivo resident property.
    Ma WD; Xu H; Nie SF; Pan WS
    Drug Dev Ind Pharm; 2008 Mar; 34(3):258-66. PubMed ID: 18363141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Rheological properties of poloxamer 407 aqueous solutions].
    Hu J; Chen DW; Quan DQ
    Yao Xue Xue Bao; 2011 Feb; 46(2):227-31. PubMed ID: 21542295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gels of Pluronic F127 and nonionic surfactants from rheological characterization to controlled drug permeation.
    Antunes FE; Gentile L; Rossi CO; Tavano L; Ranieri GA
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):42-8. PubMed ID: 21612898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of diclofenac sodium thermorevesible subcutaneous drug delivery system.
    Nasir F; Iqbal Z; Khan JA; Khan A; Khuda F; Ahmad L; Khan A; Khan A; Dayoo A; Roohullah
    Int J Pharm; 2012 Dec; 439(1-2):120-6. PubMed ID: 23084951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin.
    Qi H; Chen W; Huang C; Li L; Chen C; Li W; Wu C
    Int J Pharm; 2007 Jun; 337(1-2):178-87. PubMed ID: 17254725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of thermoreversible in situ gelling system of forskolin for the treatment of glaucoma.
    Gupta S; Samanta MK
    Pharm Dev Technol; 2010; 15(4):386-93. PubMed ID: 19772380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: In vitro drug release and in vivo tissue distribution.
    Wei Y; Li C; Zhu Q; Zhang X; Guan J; Mao S
    Int J Pharm; 2020 Mar; 578():119184. PubMed ID: 32112932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.