BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21459170)

  • 1. Proteomic studies on protein modification by cyclopentenone prostaglandins: expanding our view on electrophile actions.
    Garzón B; Oeste CL; Díez-Dacal B; Pérez-Sala D
    J Proteomics; 2011 Oct; 74(11):2243-63. PubMed ID: 21459170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of cysteine residues by cyclopentenone prostaglandins: interplay with redox regulation of protein function.
    Oeste CL; Pérez-Sala D
    Mass Spectrom Rev; 2014; 33(2):110-25. PubMed ID: 23818260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-inflammatory prostanoids: focus on the interactions between electrophile signaling and resolution of inflammation.
    Díez-Dacal B; Pérez-Sala D
    ScientificWorldJournal; 2010 Apr; 10():655-75. PubMed ID: 20419278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophilic prostaglandins: identification of protein targets and opportunities for drug discovery.
    Pérez-Sala D
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S8. PubMed ID: 26461419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostanoids with cyclopentenone structure as tools for the characterization of electrophilic lipid-protein interactomes.
    Stamatakis K; Pérez-Sala D
    Ann N Y Acad Sci; 2006 Dec; 1091():548-70. PubMed ID: 17341644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential selectivity of protein modification by the cyclopentenone prostaglandins PGA1 and 15-deoxy-Delta12,14-PGJ2: role of glutathione.
    Gayarre J; Stamatakis K; Renedo M; Pérez-Sala D
    FEBS Lett; 2005 Oct; 579(25):5803-8. PubMed ID: 16223487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of protein targets for covalent modification by the antitumoral and anti-inflammatory prostaglandin PGA1: focus on vimentin.
    Gharbi S; Garzón B; Gayarre J; Timms J; Pérez-Sala D
    J Mass Spectrom; 2007 Nov; 42(11):1474-84. PubMed ID: 17960581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein disulfide isomerase as a novel target for cyclopentenone prostaglandins: implications for hypoxic ischemic injury.
    Liu H; Chen J; Li W; Rose ME; Shinde SN; Balasubramani M; Uechi GT; Mutus B; Graham SH; Hickey RW
    FEBS J; 2015 May; 282(10):2045-59. PubMed ID: 25754985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biotinylated analog of the anti-proliferative prostaglandin A1 allows assessment of PPAR-independent effects and identification of novel cellular targets for covalent modification.
    Garzón B; Gayarre J; Gharbi S; Díez-Dacal B; Sánchez-Gómez FJ; Timms JF; Pérez-Sala D
    Chem Biol Interact; 2010 Jan; 183(1):212-21. PubMed ID: 19800325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of proteins by cyclopentenone prostaglandins is differentially modulated by GSH in vitro.
    Gayarre J; Avellano MI; Sánchez-Gómez FJ; Carrasco MJ; Cañada FJ; Pérez-Sala D
    Ann N Y Acad Sci; 2007 Jan; 1096():78-85. PubMed ID: 17405918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms?
    Domingues RM; Domingues P; Melo T; Pérez-Sala D; Reis A; Spickett CM
    J Proteomics; 2013 Oct; 92():110-31. PubMed ID: 23770299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric Oxide and Electrophilic Cyclopentenone Prostaglandins in Redox signaling, Regulation of Cytoskeleton Dynamics and Intercellular Communication.
    Bago Á; Íñiguez MA; Serrador JM
    Front Cell Dev Biol; 2021; 9():673973. PubMed ID: 34026763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-terminus of H-Ras as a target for the covalent binding of reactive compounds modulating Ras-dependent pathways.
    Oeste CL; Díez-Dacal B; Bray F; García de Lacoba M; de la Torre BG; Andreu D; Ruiz-Sánchez AJ; Pérez-Inestrosa E; García-Domínguez CA; Rojas JM; Pérez-Sala D
    PLoS One; 2011 Jan; 6(1):e15866. PubMed ID: 21253588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence for the covalent modification of glutathione-S-transferase P1-1 by electrophilic prostaglandins: implications for enzyme inactivation and cell survival.
    Sánchez-Gómez FJ; Gayarre J; Avellano MI; Pérez-Sala D
    Arch Biochem Biophys; 2007 Jan; 457(2):150-9. PubMed ID: 17169324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Interactions and Implications of Aldose Reductase Inhibition by PGA1 and Clinically Used Prostaglandins.
    Díez-Dacal B; Sánchez-Gómez FJ; Sánchez-Murcia PA; Milackova I; Zimmerman T; Ballekova J; García-Martín E; Agúndez JA; Gharbi S; Gago F; Stefek M; Pérez-Sala D
    Mol Pharmacol; 2016 Jan; 89(1):42-52. PubMed ID: 26487510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclopentenone: a special moiety for anticancer drug design.
    Conti M
    Anticancer Drugs; 2006 Oct; 17(9):1017-22. PubMed ID: 17001173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel protein targets for modification by 15-deoxy-Delta12,14-prostaglandin J2 in mesangial cells reveals multiple interactions with the cytoskeleton.
    Stamatakis K; Sánchez-Gómez FJ; Pérez-Sala D
    J Am Soc Nephrol; 2006 Jan; 17(1):89-98. PubMed ID: 16291835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂ as an electrophilic mediator.
    Shibata T
    Biosci Biotechnol Biochem; 2015; 79(7):1044-9. PubMed ID: 26011133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atherosclerosis: a redox-sensitive lipid imbalance suppressible by cyclopentenone prostaglandins.
    Gutierrez LL; Maslinkiewicz A; Curi R; de Bittencourt PI
    Biochem Pharmacol; 2008 Jun; 75(12):2245-62. PubMed ID: 18440492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking protein oxidation to environmental pollutants: redox proteomic approaches.
    Braconi D; Bernardini G; Santucci A
    J Proteomics; 2011 Oct; 74(11):2324-37. PubMed ID: 21767673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.