These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
458 related articles for article (PubMed ID: 21459533)
1. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database. Dietzel M; Baltzer PA; Dietzel A; Zoubi R; Gröschel T; Burmeister HP; Bogdan M; Kaiser WA Eur J Radiol; 2012 Jul; 81(7):1508-13. PubMed ID: 21459533 [TBL] [Abstract][Full Text] [Related]
2. Application of artificial neural networks for the prediction of lymph node metastases to the ipsilateral axilla - initial experience in 194 patients using magnetic resonance mammography. Dietzel M; Baltzer PA; Dietzel A; Vag T; Gröschel T; Gajda M; Camara O; Kaiser WA Acta Radiol; 2010 Oct; 51(8):851-8. PubMed ID: 20707666 [TBL] [Abstract][Full Text] [Related]
3. Differential diagnosis of breast lesions 5 mm or less: is there a role for magnetic resonance imaging? Dietzel M; Baltzer PA; Vag T; Gröschel T; Gajda M; Camara O; Kaiser WA J Comput Assist Tomogr; 2010; 34(3):456-64. PubMed ID: 20498554 [TBL] [Abstract][Full Text] [Related]
4. A systematic comparison of two pulse sequences for edema assessment in MR-mammography. Baltzer PA; Dietzel M; Gajda ; Camara O; Kaiser WA Eur J Radiol; 2012 Jul; 81(7):1500-3. PubMed ID: 21481556 [TBL] [Abstract][Full Text] [Related]
5. Magnetic resonance mammography of invasive lobular versus ductal carcinoma: systematic comparison of 811 patients reveals high diagnostic accuracy irrespective of typing. Dietzel M; Baltzer PA; Vag T; Gröschel T; Gajda M; Camara O; Kaiser WA J Comput Assist Tomogr; 2010 Jul; 34(4):587-95. PubMed ID: 20657229 [TBL] [Abstract][Full Text] [Related]
6. Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Baker JA; Kornguth PJ; Lo JY; Williford ME; Floyd CE Radiology; 1995 Sep; 196(3):817-22. PubMed ID: 7644649 [TBL] [Abstract][Full Text] [Related]
7. Potential of MR mammography to predict tumor grading of invasive breast cancer. Dietzel M; Baltzer PA; Vag T; Zoubi R; Gröschel T; Burmeister H; Gajda M; Runnebaum IB; Kaiser WA Rofo; 2011 Sep; 183(9):826-33. PubMed ID: 21442559 [TBL] [Abstract][Full Text] [Related]
8. Advanced integrated technique in breast cancer thermography. Ng EY; Kee EC J Med Eng Technol; 2008; 32(2):103-14. PubMed ID: 17852648 [TBL] [Abstract][Full Text] [Related]
9. The necrosis sign in magnetic resonance-mammography: diagnostic accuracy in 1,084 histologically verified breast lesions. Dietzel M; Baltzer PA; Vag T; Herzog A; Gajda M; Camara O; Kaiser WA Breast J; 2010; 16(6):603-8. PubMed ID: 21070437 [TBL] [Abstract][Full Text] [Related]
10. Impact of missing data in evaluating artificial neural networks trained on complete data. Markey MK; Tourassi GD; Margolis M; DeLong DM Comput Biol Med; 2006 May; 36(5):516-25. PubMed ID: 15893745 [TBL] [Abstract][Full Text] [Related]
11. Magnetic resonance imaging of intraductal papillomas: typical findings and differential diagnosis. Dietzel M; Kaiser C; Baltzer PA J Comput Assist Tomogr; 2015; 39(2):176-84. PubMed ID: 25423553 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of clinical breast MR imaging performed with prototype computer-aided diagnosis breast MR imaging workstation: reader study. Shimauchi A; Giger ML; Bhooshan N; Lan L; Pesce LL; Lee JK; Abe H; Newstead GM Radiology; 2011 Mar; 258(3):696-704. PubMed ID: 21212365 [TBL] [Abstract][Full Text] [Related]
13. Neural network approach to the segmentation and classification of dynamic magnetic resonance images of the breast: comparison with empiric and quantitative kinetic parameters. Szabó BK; Aspelin P; Wiberg MK Acad Radiol; 2004 Dec; 11(12):1344-54. PubMed ID: 15596372 [TBL] [Abstract][Full Text] [Related]
14. Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering. Chang YC; Huang YH; Huang CS; Chang PK; Chen JH; Chang RF Magn Reson Imaging; 2012 Apr; 30(3):312-22. PubMed ID: 22245697 [TBL] [Abstract][Full Text] [Related]
15. Neural network analysis of breast cancer from MRI findings. Abdolmaleki P; Buadu LD; Murayama S; Murakami J; Hashiguchi N; Yabuuchi H; Masuda K Radiat Med; 1997; 15(5):283-93. PubMed ID: 9445150 [TBL] [Abstract][Full Text] [Related]
16. Clinical MR-mammography: are computer-assisted methods superior to visual or manual measurements for curve type analysis? A systematic approach. Baltzer PA; Freiberg C; Beger S; Vag T; Dietzel M; Herzog AB; Gajda M; Camara O; Kaiser WA Acad Radiol; 2009 Sep; 16(9):1070-6. PubMed ID: 19523854 [TBL] [Abstract][Full Text] [Related]
17. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions. Milenković J; Hertl K; Košir A; Zibert J; Tasič JF Artif Intell Med; 2013 Jun; 58(2):101-14. PubMed ID: 23548472 [TBL] [Abstract][Full Text] [Related]
18. Observer study of a prototype clinical decision support system for breast cancer diagnosis using dynamic contrast-enhanced MRI. Boroczky L; Simpson M; Abe H; Drysdale J AJR Am J Roentgenol; 2013 Feb; 200(2):277-83. PubMed ID: 23345346 [TBL] [Abstract][Full Text] [Related]
19. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Wu Y; Giger ML; Doi K; Vyborny CJ; Schmidt RA; Metz CE Radiology; 1993 Apr; 187(1):81-7. PubMed ID: 8451441 [TBL] [Abstract][Full Text] [Related]
20. Differentiation of common large sellar-suprasellar masses effect of artificial neural network on radiologists' diagnosis performance. Kitajima M; Hirai T; Katsuragawa S; Okuda T; Fukuoka H; Sasao A; Akter M; Awai K; Nakayama Y; Ikeda R; Yamashita Y; Yano S; Kuratsu J; Doi K Acad Radiol; 2009 Mar; 16(3):313-20. PubMed ID: 19201360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]