These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 2145975)
1. The ADP that binds tightly to nucleotide-depleted mitochondrial F1-ATPase and inhibits catalysis is bound at a catalytic site. Milgrom YM; Boyer PD Biochim Biophys Acta; 1990 Oct; 1020(1):43-8. PubMed ID: 2145975 [TBL] [Abstract][Full Text] [Related]
2. Mapping of nucleotide-depleted mitochondrial F1-ATPase with 2-azido-[alpha-32P]adenosine diphosphate. Evidence for two nucleotide binding sites in the beta subunit. Lunardi J; Garin J; Issartel JP; Vignais PV J Biol Chem; 1987 Nov; 262(31):15172-81. PubMed ID: 2889735 [TBL] [Abstract][Full Text] [Related]
3. Photolabeling of mitochondrial F1-H+ATPase by 2-azido[3H]ADP and 8-azido[3H]ADP entrapped as fluorometal complexes into the catalytic sites of the enzyme. Garin J; Vinçon M; Gagnon J; Vignais P Biochemistry; 1994 Mar; 33(12):3772-7. PubMed ID: 8142378 [TBL] [Abstract][Full Text] [Related]
4. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate. Murataliev MB Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of mitochondrial F1-ATPase activity by binding of (2-azido-) ADP to a slowly exchangeable non-catalytic nucleotide binding site. Edel CM; Hartog AF; Berden JA Biochim Biophys Acta; 1992 Aug; 1101(3):329-38. PubMed ID: 1386529 [TBL] [Abstract][Full Text] [Related]
6. Tightly bound 2-azido-adenine nucleotides at catalytic and noncatalytic sites of the rat liver F1 ATPase label adjacent tryptic peptides of the beta subunit. Guerrero KJ; Boyer PD Biochem Biophys Res Commun; 1988 Aug; 154(3):854-60. PubMed ID: 2900637 [TBL] [Abstract][Full Text] [Related]
8. Adenine nucleotide-binding sites on mitochondrial F1-ATPase: studies of the inactive complex formed upon binding ADP at a catalytic site. Chernyak BV; Cross RL Arch Biochem Biophys; 1992 Jun; 295(2):247-52. PubMed ID: 1534000 [TBL] [Abstract][Full Text] [Related]
9. When beef-heart mitochondrial F1-ATPase is inhibited by inhibitor protein a nucleotide is trapped in one of the catalytic sites. Milgrom YM Eur J Biochem; 1991 Sep; 200(3):789-95. PubMed ID: 1833193 [TBL] [Abstract][Full Text] [Related]
10. ADP tethered to tyrosine-beta 345 at the catalytic site of the bovine heart F1-ATPase is converted to tethered AMP by Mg(2+)-dependent hydrolysis when the enzyme is photoinactivated with 2-N3-ADP. Jault JM; Allison WS FEBS Lett; 1994 Jun; 347(1):13-6. PubMed ID: 8013653 [TBL] [Abstract][Full Text] [Related]
11. Hysteretic inhibition of the bovine heart mitochondrial F1-ATPase is due to saturation of noncatalytic sites with ADP which blocks activation of the enzyme by ATP. Jault JM; Allison WS J Biol Chem; 1994 Jan; 269(1):319-25. PubMed ID: 8276813 [TBL] [Abstract][Full Text] [Related]
12. Demonstration of two exchangeable non-catalytic and two cooperative catalytic sites in isolated bovine heart mitochondrial F1, using the photoaffinity labels [2-3H]8-azido-ATP and [2-3H]8-azido-ADP. van Dongen MB; Berden JA Biochim Biophys Acta; 1986 Jun; 850(1):121-30. PubMed ID: 2871864 [TBL] [Abstract][Full Text] [Related]
13. Azidonaphthoyl-ADP: a specific photolabel for the high-affinity nucleotide-binding sites of F1-ATPase. Lübben M; Lücken U; Weber J; Schäfer G Eur J Biochem; 1984 Sep; 143(3):483-90. PubMed ID: 6236974 [TBL] [Abstract][Full Text] [Related]
14. Identification of amino acid residues photolabeled with 2-azido[alpha-32P]adenosine diphosphate in the beta subunit of beef heart mitochondrial F1-ATPase. Garin J; Boulay F; Issartel JP; Lunardi J; Vignais PV Biochemistry; 1986 Jul; 25(15):4431-7. PubMed ID: 2875732 [TBL] [Abstract][Full Text] [Related]
15. Tightly bound adenosine diphosphate, which inhibits the activity of mitochondrial F1-ATPase, is located at the catalytic site of the enzyme. Drobinskaya IY; Kozlov IA; Murataliev MB; Vulfson EN FEBS Lett; 1985 Mar; 182(2):419-24. PubMed ID: 2858407 [TBL] [Abstract][Full Text] [Related]
16. Fluoroaluminum and fluoroberyllium nucleoside diphosphate complexes as probes of the enzymatic mechanism of the mitochondrial F1-ATPase. Issartel JP; Dupuis A; Lunardi J; Vignais PV Biochemistry; 1991 May; 30(19):4726-33. PubMed ID: 1827593 [TBL] [Abstract][Full Text] [Related]
17. Changes in chemical properties of mitochondrial adenosinetriphosphatase upon removal of tightly bound nucleotides. Tamura JK; Wang JH Biochemistry; 1983 Apr; 22(8):1947-54. PubMed ID: 6221755 [TBL] [Abstract][Full Text] [Related]
18. Total number and differentiation of nucleotide binding sites on mitochondrial F1-ATPase. An approach by photolabeling and equilibrium binding studies. Weber J; Lücken U; Schäfer G Eur J Biochem; 1985 Apr; 148(1):41-7. PubMed ID: 2858390 [TBL] [Abstract][Full Text] [Related]
19. Adenine nucleotide binding sites on beef heart F1 ATPase: photoaffinity labeling of beta-subunit Tyr-368 at a noncatalytic site and beta Tyr-345 at a catalytic site. Cross RL; Cunningham D; Miller CG; Xue ZX; Zhou JM; Boyer PD Proc Natl Acad Sci U S A; 1987 Aug; 84(16):5715-9. PubMed ID: 2886991 [TBL] [Abstract][Full Text] [Related]
20. Comparative Mg(2+)-dependent sequential covalent binding stoichiometries of 3'-O-(4-benzoyl)benzoyl adenosine 5'-diphosphate of MF1, TF1, and the alpha 3 beta 3 core complex of TF1. The binding change motif is independent of the F1 gamma delta epsilon subunits. Aloise P; Kagawa Y; Coleman PS J Biol Chem; 1991 Jun; 266(16):10368-76. PubMed ID: 1828072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]