These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21459977)

  • 1. The role of bundle sheath extensions and life form in stomatal responses to leaf water status.
    Buckley TN; Sack L; Gilbert ME
    Plant Physiol; 2011 Jun; 156(2):962-73. PubMed ID: 21459977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bundle sheath extensions affect leaf structural and physiological plasticity in response to irradiance.
    Barbosa MAM; Chitwood DH; Azevedo AA; Araújo WL; Ribeiro DM; Peres LEP; Martins SCV; Zsögön A
    Plant Cell Environ; 2019 May; 42(5):1575-1589. PubMed ID: 30523629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological distribution of homobaric and heterobaric leaves in tree species of Malaysian lowland tropical rainforest.
    Kenzo T; Ichie T; Watanabe Y; Hiromi T
    Am J Bot; 2007 May; 94(5):764-75. PubMed ID: 21636445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum).
    Zsögön A; Negrini AC; Peres LE; Nguyen HT; Ball MC
    New Phytol; 2015 Jan; 205(2):618-26. PubMed ID: 25267094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Should structure-function relations be considered separately for homobaric vs. heterobaric leaves?
    Liakoura V; Fotelli MN; Rennenberg H; Karabourniotis G
    Am J Bot; 2009 Mar; 96(3):612-9. PubMed ID: 21628217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Plant Cell Environ; 2014 Jan; 37(1):124-31. PubMed ID: 23682831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods.
    Scoffoni C; Pou A; Aasamaa K; Sack L
    Plant Cell Environ; 2008 Dec; 31(12):1803-12. PubMed ID: 18771574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees distributed in a South-east Asian tropical rainforest in Peninsular Malaysia.
    Kamakura M; Kosugi Y; Takanashi S; Uemura A; Utsugi H; Kassim AR
    Tree Physiol; 2015 Jan; 35(1):61-70. PubMed ID: 25595752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity in bundle sheath extensions of heterobaric leaves.
    Lynch DJ; McInerney FA; Kouwenberg LL; Gonzalez-Meler MA
    Am J Bot; 2012 Jul; 99(7):1197-206. PubMed ID: 22753811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do stomata respond to water status?
    Buckley TN
    New Phytol; 2019 Oct; 224(1):21-36. PubMed ID: 31069803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions.
    Torres-Ruiz JM; Diaz-Espejo A; Perez-Martin A; Hernandez-Santana V
    Tree Physiol; 2015 Apr; 35(4):415-24. PubMed ID: 25030936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating transient heterogeneity of non-photochemical quenching in shade-grown heterobaric leaves of avocado (Persea americana L.): responses to CO2 concentration, stomatal occlusion, dehydration and relative humidity.
    Takayama K; King D; Robinson SA; Osmond B
    Plant Cell Physiol; 2013 Nov; 54(11):1852-66. PubMed ID: 24078766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal behavior following mid- or long-term exposure to high relative air humidity: A review.
    Fanourakis D; Aliniaeifard S; Sellin A; Giday H; Körner O; Rezaei Nejad A; Delis C; Bouranis D; Koubouris G; Kambourakis E; Nikoloudakis N; Tsaniklidis G
    Plant Physiol Biochem; 2020 Aug; 153():92-105. PubMed ID: 32485617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulics Regulate Stomatal Responses to Changes in Leaf Water Status in the Fern
    Cardoso AA; Randall JM; McAdam SAM
    Plant Physiol; 2019 Feb; 179(2):533-543. PubMed ID: 30538169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin-driven ecophysiological diversification of leaves in domesticated tomato.
    Moreira JDR; Rosa BL; Lira BS; Lima JE; Correia LNF; Otoni WC; Figueira A; Freschi L; Sakamoto T; Peres LEP; Rossi M; Zsögön A
    Plant Physiol; 2022 Aug; 190(1):113-126. PubMed ID: 35639975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specialized stomatal humidity responses underpin ecological diversity in C3 bromeliads.
    Males J; Griffiths H
    Plant Cell Environ; 2017 Dec; 40(12):2931-2945. PubMed ID: 28722113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of the scale of patchy stomatal behavior in leaves of Quercus crispula using an Imaging-PAM chlorophyll fluorometer.
    Kamakura M; Kosugi Y; Takanashi S; Tobita H; Uemura A; Utsugi H
    Tree Physiol; 2012 Jul; 32(7):839-46. PubMed ID: 22696269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition for epidermal space in the evolution of leaves with high physiological rates.
    Baresch A; Crifò C; Boyce CK
    New Phytol; 2019 Jan; 221(2):628-639. PubMed ID: 30216453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.