These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 21460081)
1. The L-Arabinan utilization system of Geobacillus stearothermophilus. Shulami S; Raz-Pasteur A; Tabachnikov O; Gilead-Gropper S; Shner I; Shoham Y J Bacteriol; 2011 Jun; 193(11):2838-50. PubMed ID: 21460081 [TBL] [Abstract][Full Text] [Related]
2. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6. Lansky S; Salama R; Solomon HV; Feinberg H; Belrhali H; Shoham Y; Shoham G Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2994-3012. PubMed ID: 25372689 [TBL] [Abstract][Full Text] [Related]
3. Carbohydrate-Binding Capability and Functional Conformational Changes of AbnE, an Arabino-oligosaccharide Binding Protein. Lansky S; Salama R; Shulami S; Lavid N; Sen S; Schapiro I; Shoham Y; Shoham G J Mol Biol; 2020 Mar; 432(7):2099-2120. PubMed ID: 32067952 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis. Raposo MP; Inácio JM; Mota LJ; de Sá-Nogueira I J Bacteriol; 2004 Mar; 186(5):1287-96. PubMed ID: 14973026 [TBL] [Abstract][Full Text] [Related]
5. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H Appl Environ Microbiol; 2009 Jun; 75(11):3419-29. PubMed ID: 19346355 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic Mechanism for Arabinan Degradation and Transport in the Thermophilic Bacterium Caldanaerobius polysaccharolyticus. Wefers D; Dong J; Abdel-Hamid AM; Paul HM; Pereira GV; Han Y; Dodd D; Baskaran R; Mayer B; Mackie RI; Cann I Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710263 [TBL] [Abstract][Full Text] [Related]
7. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. Tabachnikov O; Shoham Y FEBS J; 2013 Feb; 280(3):950-64. PubMed ID: 23216604 [TBL] [Abstract][Full Text] [Related]
8. A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus. Shulami S; Zaide G; Zolotnitsky G; Langut Y; Feld G; Sonenshein AL; Shoham Y Appl Environ Microbiol; 2007 Feb; 73(3):874-84. PubMed ID: 17142383 [TBL] [Abstract][Full Text] [Related]
9. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis. Mota LJ; Tavares P; Sá-Nogueira I Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639 [TBL] [Abstract][Full Text] [Related]
10. AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions. Kuge T; Teramoto H; Inui M J Bacteriol; 2015 Dec; 197(24):3788-96. PubMed ID: 26416832 [TBL] [Abstract][Full Text] [Related]
11. The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. Shulami S; Gat O; Sonenshein AL; Shoham Y J Bacteriol; 1999 Jun; 181(12):3695-704. PubMed ID: 10368143 [TBL] [Abstract][Full Text] [Related]
12. Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping. Mota LJ; Sarmento LM; de Sá-Nogueira I J Bacteriol; 2001 Jul; 183(14):4190-201. PubMed ID: 11418559 [TBL] [Abstract][Full Text] [Related]
13. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization. Sá-Nogueira I; Ramos SS J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028 [TBL] [Abstract][Full Text] [Related]
14. Functional Characterization of Endo- and Exo-Hydrolase Genes in Arabinan Degradation Gene Cluster of Kang Y; Choi CY; Kang J; Ju YR; Kim HB; Han NS; Kim TJ Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542148 [TBL] [Abstract][Full Text] [Related]
15. Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Inácio JM; Correia IL; de Sá-Nogueira I Microbiology (Reading); 2008 Sep; 154(Pt 9):2719-2729. PubMed ID: 18757805 [TBL] [Abstract][Full Text] [Related]
16. The LacI-Type transcriptional regulator AraR acts as an L-arabinose-responsive repressor of L-arabinose utilization genes in Corynebacterium glutamicum ATCC 31831. Kuge T; Teramoto H; Yukawa H; Inui M J Bacteriol; 2014 Jun; 196(12):2242-54. PubMed ID: 24706742 [TBL] [Abstract][Full Text] [Related]
17. Cross-utilization of β-galactosides and cellobiose in Shulami S; Zehavi A; Belakhov V; Salama R; Lansky S; Baasov T; Shoham G; Shoham Y J Biol Chem; 2020 Jul; 295(31):10766-10780. PubMed ID: 32493770 [TBL] [Abstract][Full Text] [Related]
18. Two Distinct α-l-Arabinofuranosidases in Caldicellulosiruptor Species Drive Degradation of Arabinose-Based Polysaccharides. Saleh MA; Han WJ; Lu M; Wang B; Li H; Kelly RM; Li FL Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432102 [TBL] [Abstract][Full Text] [Related]
19. Characterization of two extracellular arabinanases in Lactobacillus crispatus. Li Q; Gänzle MG Appl Microbiol Biotechnol; 2020 Dec; 104(23):10091-10103. PubMed ID: 33119797 [TBL] [Abstract][Full Text] [Related]
20. Multiple regulatory mechanisms control the expression of the Geobacillus stearothermophilus gene for extracellular xylanase. Shulami S; Shenker O; Langut Y; Lavid N; Gat O; Zaide G; Zehavi A; Sonenshein AL; Shoham Y J Biol Chem; 2014 Sep; 289(37):25957-75. PubMed ID: 25070894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]