These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 21460424)

  • 61. Concurrent La and A-Site Vacancy Doping Modulates the Thermoelectric Response of SrTiO
    Azough F; Jackson SS; Ekren D; Freer R; Molinari M; Yeandel SR; Panchmatia PM; Parker SC; Maldonado DH; Kepaptsoglou DM; Ramasse QM
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41988-42000. PubMed ID: 29134804
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preparation and characterization of chemically derived (Pb,La)TiO (3) thin films.
    Schwartz RW; Tuttle BA; Doughty DH; Land CE; Goodnow DC; Hernandez CL; Zender TJ; Martinez SL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(6):677-83. PubMed ID: 18267634
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nanoplated bismuth titanate sub-microspheres for protein immobilization and their corresponding direct electrochemistry and electrocatalysis.
    Chen X; Hu J; Chen Z; Feng X; Li A
    Biosens Bioelectron; 2009 Aug; 24(12):3448-54. PubMed ID: 19523804
    [TBL] [Abstract][Full Text] [Related]  

  • 64. First-principles calculations of oxygen vacancy formation and metallic behavior at a β-MnO2 grain boundary.
    Dawson JA; Chen H; Tanaka I
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1726-34. PubMed ID: 25559707
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Vacancy diffusion and coalescence in graphene directed by defect strain fields.
    Trevethan T; Latham CD; Heggie MI; Briddon PR; Rayson MJ
    Nanoscale; 2014 Mar; 6(5):2978-86. PubMed ID: 24487384
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Co-doping of (Bi(0.5)Na(0.5))TiO(3): secondary phase formation and lattice site preference of Co.
    Schmitt V; Staab TE
    J Phys Condens Matter; 2012 Nov; 24(45):455901. PubMed ID: 23060596
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Oxygen vacancy formation and annihilation in lanthanum cerium oxide as a metal reactive oxide on 4H-silicon carbide.
    Lim WF; Cheong KY
    Phys Chem Chem Phys; 2014 Apr; 16(15):7015-22. PubMed ID: 24603767
    [TBL] [Abstract][Full Text] [Related]  

  • 68. First-principles density functional study of polarization-strain coupling in bismuth titanate.
    Shah SH; Bristowe PD
    J Phys Condens Matter; 2010 Sep; 22(38):385902. PubMed ID: 21386559
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of Gamma Irradiation on the Structural, Optical, Electrical, and Ferroelectric Characterizations of Bismuth-Modified Barium Titanate Ceramics.
    Al-Ghamdi H; Almuqrin AH; Kassim H
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744396
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Change of Phase Transition Temperature in Band Engineered Ferroelectric Lanthanum-Modified Bismuth Titanates.
    Tang R; Kim S; Bark CW
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7135-7139. PubMed ID: 32604571
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Layered perovskites with giant spontaneous polarizations for nonvolatile memories.
    Chon U; Jang HM; Kim MG; Chang CH
    Phys Rev Lett; 2002 Aug; 89(8):087601. PubMed ID: 12190499
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A correlation between the ionic conductivities and the formation enthalpies of trivalent-doped ceria at relatively low temperatures.
    Avila-Paredes HJ; Shvareva T; Chen W; Navrotsky A; Kim S
    Phys Chem Chem Phys; 2009 Oct; 11(38):8580-5. PubMed ID: 19774290
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Vacancies and holes in bulk and at 180° domain walls in lead titanate.
    Paillard C; Geneste G; Bellaiche L; Dkhil B
    J Phys Condens Matter; 2017 Dec; 29(48):485707. PubMed ID: 29039738
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ab Initio Thermodynamics of Oxygen Vacancies and Zinc Interstitials in ZnO.
    Bjørheim TS; Kotomin E
    J Phys Chem Lett; 2014 Dec; 5(24):4238-42. PubMed ID: 26273968
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ferroelectric bismuth-titanate nanoplatelets and nanowires with a new crystal structure.
    Makovec D; Križaj N; Meden A; Dražić G; Uršič H; Kostanjšek R; Šala M; Gyergyek S
    Nanoscale; 2022 Mar; 14(9):3537-3544. PubMed ID: 35174842
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).
    Slouka C; Kainz T; Navickas E; Walch G; Hutter H; Reichmann K; Fleig J
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774067
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Wide bandgap tunability in complex transition metal oxides by site-specific substitution.
    Choi WS; Chisholm MF; Singh DJ; Choi T; Jellison GE; Lee HN
    Nat Commun; 2012 Feb; 3():689. PubMed ID: 22353719
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Calculation of formation energy of oxygen vacancy in ZnO based on photoluminescence measurements.
    Kim Y; Kang S
    J Phys Chem B; 2010 Jun; 114(23):7874-8. PubMed ID: 20499883
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide.
    Agoston P; Erhart P; Klein A; Albe K
    J Phys Condens Matter; 2009 Nov; 21(45):455801. PubMed ID: 21694019
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ferroelectrics with a controlled oxygen-vacancy distribution by design.
    Noguchi Y; Matsuo H; Kitanaka Y; Miyayama M
    Sci Rep; 2019 Mar; 9(1):4225. PubMed ID: 30862877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.