BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 21460523)

  • 1. Morphological and biochemical variations in the gills of 12 aquatic air-breathing anabantoid fish.
    Huang CY; Lin CP; Lin HC
    Physiol Biochem Zool; 2011; 84(2):125-34. PubMed ID: 21460523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of acidity on gill variations in the aquatic air-breathing fish, Trichogaster lalius.
    Huang CY; Lin HC
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Jan; 158(1):61-71. PubMed ID: 20840871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.
    Huang CY; Lin CH; Lin HC
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():24-32. PubMed ID: 25783787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of ontogenetic changes in branchial morphology on gill function in Arapaima gigas.
    Gonzalez RJ; Brauner CJ; Wang YX; Richards JG; Patrick ML; Xi W; Matey V; Val AL
    Physiol Biochem Zool; 2010; 83(2):322-32. PubMed ID: 20100089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The distribution of mitochondria-rich cells in the gills of air-breathing fishes.
    Lin HC; Sung WT
    Physiol Biochem Zool; 2003; 76(2):215-28. PubMed ID: 12794675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different Oxygen Stresses on the Responses of Branchial Morphology and Protein Expression in the Gills and Labyrinth Organ in the Aquatic Air-breathing Fish,
    Huang CY; Lin HC
    Zool Stud; 2016; 55():e27. PubMed ID: 31966172
    [No Abstract]   [Full Text] [Related]  

  • 7. Hypoxia-induced developmental plasticity of larval growth, gill and labyrinth organ morphometrics in two anabantoid fish: The facultative air-breather Siamese fighting fish (Betta splendens) and the obligate air-breather the blue gourami (Trichopodus trichopterus).
    Mendez-Sanchez JF; Burggren WW
    J Morphol; 2019 Feb; 280(2):193-204. PubMed ID: 30570160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+/K+-ATPase and vacuolar-type H+-ATPase in the gills of the aquatic air-breathing fish Trichogaster microlepis in response to salinity variation.
    Huang CY; Chao PL; Lin HC
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Mar; 155(3):309-18. PubMed ID: 19931636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcirculation of gills and accessory respiratory organs from the air-breathing snakehead fish, Channa punctata, C. gachua, and C. marulius.
    Olson KR; Roy PK; Ghosh TK; Munshi JS
    Anat Rec; 1994 Jan; 238(1):92-107. PubMed ID: 8116893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypoxia on ionic regulation, glycogen utilization and antioxidative ability in the gills and liver of the aquatic air-breathing fish Trichogaster microlepis.
    Huang CY; Lin HC; Lin CH
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jan; 179():25-34. PubMed ID: 25218942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The absence of ion-regulatory suppression in the gills of the aquatic air-breathing fish Trichogaster lalius during oxygen stress.
    Huang CY; Lin HH; Lin CH; Lin HC
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jan; 179():7-16. PubMed ID: 25194989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional differentiation in the anterior gills of the aquatic air-breathing fish, Trichogaster leeri.
    Huang CY; Lee W; Lin HC
    J Comp Physiol B; 2008 Jan; 178(1):111-21. PubMed ID: 17957375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptides and nitric oxide synthase in the gill and the air-breathing organs of fishes.
    Zaccone G; Mauceri A; Fasulo S
    J Exp Zool A Comp Exp Biol; 2006 May; 305(5):428-39. PubMed ID: 16506226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypercarbic cardiorespiratory reflexes in the facultative air-breathing fish jeju (Hoplerythrinus unitaeniatus): the role of branchial CO2 chemoreceptors.
    de Lima Boijink C; Florindo LH; Leite CA; Kalinin AL; Milsom WK; Rantin FT
    J Exp Biol; 2010 Aug; 213(Pt 16):2797-807. PubMed ID: 20675550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.
    Brauner CJ; Matey V; Wilson JM; Bernier NJ; Val AL
    J Exp Biol; 2004 Apr; 207(Pt 9):1433-8. PubMed ID: 15037637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogeny and paleophysiology of the gill: new insights from larval and air-breathing fish.
    Brauner CJ; Rombough PJ
    Respir Physiol Neurobiol; 2012 Dec; 184(3):293-300. PubMed ID: 22884973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fish out of water: gill and skin remodeling promotes osmo- and ionoregulation in the mangrove killifish Kryptolebias marmoratus.
    Leblanc DM; Wood CM; Fudge DS; Wright PA
    Physiol Biochem Zool; 2010; 83(6):932-49. PubMed ID: 21029016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonia as a respiratory gas in water and air-breathing fishes.
    Randall DJ; Ip YK
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):216-25. PubMed ID: 16731054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balancing the competing requirements of air-breathing and display behaviour during male-male interactions in Siamese fighting fish Betta splendens.
    Alton LA; Portugal SJ; White CR
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Feb; 164(2):363-7. PubMed ID: 23178457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Morphology and physiology of organs of aquatic respiration in vertebrates: the gill].
    Laurent P
    J Physiol (Paris); 1984; 79(2):98-112. PubMed ID: 6716300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.