BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21460804)

  • 61. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids.
    Sancak Y; Bar-Peled L; Zoncu R; Markhard AL; Nada S; Sabatini DM
    Cell; 2010 Apr; 141(2):290-303. PubMed ID: 20381137
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Alkaline stress-induced autophagy is mediated by mTORC1 inactivation.
    Suk J; Kwak SS; Lee JH; Choi JH; Lee SH; Lee DH; Byun B; Lee GH; Joe CO
    J Cell Biochem; 2011 Sep; 112(9):2566-73. PubMed ID: 21590709
    [TBL] [Abstract][Full Text] [Related]  

  • 63. SLC38A9: A lysosomal amino acid transporter at the core of the amino acid-sensing machinery that controls MTORC1.
    Rebsamen M; Superti-Furga G
    Autophagy; 2016 Jun; 12(6):1061-2. PubMed ID: 26431368
    [TBL] [Abstract][Full Text] [Related]  

  • 64. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1.
    Dibble CC; Elis W; Menon S; Qin W; Klekota J; Asara JM; Finan PM; Kwiatkowski DJ; Murphy LO; Manning BD
    Mol Cell; 2012 Aug; 47(4):535-46. PubMed ID: 22795129
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies.
    Harris-White ME; Ferbas KG; Johnson MF; Eslami P; Poteshkina A; Venkova K; Christov A; Hensley K
    Neurobiol Dis; 2015 Dec; 84():60-8. PubMed ID: 25779968
    [TBL] [Abstract][Full Text] [Related]  

  • 66. mTORC1: turning off is just as important as turning on.
    Benjamin D; Hall MN
    Cell; 2014 Feb; 156(4):627-8. PubMed ID: 24529368
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1.
    Szymańska P; Martin KR; MacKeigan JP; Hlavacek WS; Lipniacki T
    PLoS One; 2015; 10(3):e0116550. PubMed ID: 25761126
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes.
    Yasuda M; Tanaka Y; Kume S; Morita Y; Chin-Kanasaki M; Araki H; Isshiki K; Araki S; Koya D; Haneda M; Kashiwagi A; Maegawa H; Uzu T
    Biochim Biophys Acta; 2014 Jul; 1842(7):1097-108. PubMed ID: 24726883
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Activity-independent targeting of mTOR to lysosomes in primary osteoclasts.
    Wang A; Carraro-Lacroix LR; Owen C; Gao B; Corey PN; Tyrrell P; Brumell JH; Voronov I
    Sci Rep; 2017 Jun; 7(1):3005. PubMed ID: 28592812
    [TBL] [Abstract][Full Text] [Related]  

  • 70. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB.
    Martina JA; Chen Y; Gucek M; Puertollano R
    Autophagy; 2012 Jun; 8(6):903-14. PubMed ID: 22576015
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhanced translation expands the endo-lysosome size and promotes antigen presentation during phagocyte activation.
    Hipolito VEB; Diaz JA; Tandoc KV; Oertlin C; Ristau J; Chauhan N; Saric A; Mclaughlan S; Larsson O; Topisirovic I; Botelho RJ
    PLoS Biol; 2019 Dec; 17(12):e3000535. PubMed ID: 31800587
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes.
    Ögmundsdóttir MH; Heublein S; Kazi S; Reynolds B; Visvalingam SM; Shaw MK; Goberdhan DC
    PLoS One; 2012; 7(5):e36616. PubMed ID: 22574197
    [TBL] [Abstract][Full Text] [Related]  

  • 73. MTOR, PIK3C3, and autophagy: Signaling the beginning from the end.
    Munson MJ; Ganley IG
    Autophagy; 2015; 11(12):2375-6. PubMed ID: 26565689
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex.
    Castellano BM; Thelen AM; Moldavski O; Feltes M; van der Welle RE; Mydock-McGrane L; Jiang X; van Eijkeren RJ; Davis OB; Louie SM; Perera RM; Covey DF; Nomura DK; Ory DS; Zoncu R
    Science; 2017 Mar; 355(6331):1306-1311. PubMed ID: 28336668
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1.
    Kathage B; Gehlert S; Ulbricht A; Lüdecke L; Tapia VE; Orfanos Z; Wenzel D; Bloch W; Volkmer R; Fleischmann BK; Fürst DO; Höhfeld J
    Biochim Biophys Acta Mol Cell Res; 2017 Jan; 1864(1):62-75. PubMed ID: 27756573
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Beyond indigestion: emerging roles for lysosome-based signaling in human disease.
    Ferguson SM
    Curr Opin Cell Biol; 2015 Aug; 35():59-68. PubMed ID: 25950843
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cucurbitacin E Induces Autophagy via Downregulating mTORC1 Signaling and Upregulating AMPK Activity.
    Zha QB; Zhang XY; Lin QR; Xu LH; Zhao GX; Pan H; Zhou D; Ouyang DY; Liu ZH; He XH
    PLoS One; 2015; 10(5):e0124355. PubMed ID: 25970614
    [TBL] [Abstract][Full Text] [Related]  

  • 78. AMPK -> ULK1 -> autophagy.
    Roach PJ
    Mol Cell Biol; 2011 Aug; 31(15):3082-4. PubMed ID: 21628530
    [No Abstract]   [Full Text] [Related]  

  • 79. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2.
    Feldman ME; Apsel B; Uotila A; Loewith R; Knight ZA; Ruggero D; Shokat KM
    PLoS Biol; 2009 Feb; 7(2):e38. PubMed ID: 19209957
    [TBL] [Abstract][Full Text] [Related]  

  • 80. AMDE-1 is a dual function chemical for autophagy activation and inhibition.
    Li M; Yang Z; Vollmer LL; Gao Y; Fu Y; Liu C; Chen X; Liu P; Vogt A; Yin XM
    PLoS One; 2015; 10(3):e0122083. PubMed ID: 25894744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.